Skip to main content
Log in

p600/UBR4 in the central nervous system

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

A decade ago, the large 600 kDa mammalian protein p600 (also known as UBR4) was discovered as a multifunctional protein with roles in anoikis, viral transformation and protein degradation. Recently, p600 has emerged as a critical protein in the mammalian brain with roles in neurogenesis, neuronal migration, neuronal signaling and survival. How p600 integrates these apparently unrelated functions to maintain tissue homeostasis and murine survival remains unclear. The common molecular basis underlying many of the actions of p600 suggests, however, certain conservation and transposition of these functions across systems. In this review, we summarize the central nervous system functions of p600 and propose new perspectives on its biological complexity in neuronal physiology and neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

a.a.:

Amino acid

ASD:

Autism spectrum disorder

BPV-1:

Bovine papillomavirus type 1

Ca2+ :

Calcium

CaM:

Calmodulin

CaMKIIα:

CaM-dependent protein Kinase II α isoform

CNS:

Central nervous system

ER:

Endoplasmic reticulum

FAK:

Focal adhesion kinase

hCALO:

Human homologue of Calossin

HPV-16:

Human papillomavirus type 16

MT:

Microtubule

N-cadherin:

Neuronal cadherin

p600:

Protein 600

RB:

Retinoblastoma protein

RBAF600:

Retinoblastoma-associated factor of 600 kDa

Ub:

Ubiquitin

UBR4:

Ubiquitin protein ligase E3 component N-recognin 4

ZUBR1:

Zinc finger UBR1 type 1

References

  1. Ohara O, Nagase T, Ishikawa K, Nakajima D, Ohira M, Seki N, Nomura N (1997) Construction and characterization of human brain cDNA libraries suitable for analysis of cDNA clones encoding relatively large proteins. DNA Res 4(1):53–59

    CAS  PubMed  Google Scholar 

  2. Seki N, Ohira M, Nagase T, Ishikawa K, Miyajima N, Nakajima D, Nomura N, Ohara O (1997) Characterization of cDNA clones in size-fractionated cDNA libraries from human brain. DNA Res 4(5):345–349

    CAS  PubMed  Google Scholar 

  3. Nagase T, Kikuno R, Ishikawa K, Hirosawa M, Ohara O (2000) Prediction of the coding sequences of unidentified human genes. XVI. The complete sequences of 150 new cDNA clones from brain which code for large proteins in vitro. DNA Res 7(1):65–73

    CAS  PubMed  Google Scholar 

  4. Xu X-ZS, Wes PD, Chen H, Li H-S, Yu M, Morgan S, Liu Y, Montell C (1998) Retinal targets for calmodulin include proteins implicated in synaptic transmission. J Biol Chem 273(47):31297–31307

    CAS  PubMed  Google Scholar 

  5. Gil P, Dewey E, Friml J, Zhao Y, Snowden KC, Putterill J, Palme K, Estelle M, Chory J (2001) BIG: a calossin-like protein required for polar auxin transport in Arabidopsis. Genes Dev 15:1985–1997

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Nakatani Y, Konishi H, Vassilev A, Kurooka H, Ishiguro K, Sawada J-I, Ikura T, Korsmeyer SJ, Qin J, Herlitz AM (2005) P600, a unique protein required for membrane morphogenesis and cell survival. PNAS 102(42):15093–15098

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Tasaki T, Mulder LCF, Iwamatsu A, Lee MJ, Davydov IV, Varshavsky A, Muesing M, Kwon YT (2005) A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons. Mol Cell Biol 25(16):7120–7136

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Sun G, Yuen Chan S, Yuan Y, Wang Chan K, Qiu G, Sun K, Ping Leung M (2002) Isolation of differentially expressed genes in human heart tissues. Biochim Biophys Acta 1588:241–246

    CAS  PubMed  Google Scholar 

  9. Sriram SM, Kim BY, Kwon YT (2011) The N-end rule pathway: emerging functions and molecular principles of substrate recognition. Nat Rev Mol Cell Biol 12:735–747

    CAS  PubMed  Google Scholar 

  10. Tasaki T, Sriram SM, Park KS, Kwon YT (2012) The N-end rule pathway. Annu Rev Biochem 81:261–289

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Tasaki T, Kwon YT (2007) The mammalian N-end rule pathway: new insights into its components and physiological roles. Trends Biochem Sci 32(11):520–528

    CAS  PubMed  Google Scholar 

  12. DeMasi J, Huh K-W, Nakatani Y, Munger K, Howley PM (2005) Bovine papillomavirus E7 transformation function correlates with cellular p600 protein binding. PNAS 102(32):11486–11491

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Huh K-W, DeMasi J, Ogawa H, Nakatani Y, Howley PM, Munger K (2005) Association of the human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-associated factor, p600. PNAS 102(32):11492–11497

    PubMed Central  CAS  PubMed  Google Scholar 

  14. DeMasi J, Chao MC, Kumar AS, Howley PM (2007) Bovine papillomavirus E7 oncoprotein inhibits anoikis. J Virol 81(17):9419–9425

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Corteggio A, Di Geronimo O, Roperto S, Roperto F, Borzacchiello G (2011) Bovine papillomavirus E7 oncoprotein binds to p600 in naturally occurring equine sarcoids. J Gen Virol 92:378–382

    CAS  PubMed  Google Scholar 

  16. Morrison J, Laurent-Rolle M, Maestre AM, Rajsbaum R, Pisanelli G, Simon V, Mulder LCF, Fernandez-Sesma A, Garcia-Sastre A (2013) Dengue virus co- opts UBR4 to degrade STAT2 and antagonize Type I interferon signaling. PLoS Pathog 9(3):e1003265

    PubMed Central  CAS  PubMed  Google Scholar 

  17. White EA, Sowa ME, Tan MJA, Jeudy S, Hayes SD, Santha S, Munger K, Harper JW, Howley PM (2012) Systematic identification of interactions between host cell proteins and E7 oncoproteins from diverse human papillomaviruses. PNAS 109(5):E260–E267

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Thomas M, Tomaic V, Pim D, Myers MP, Tommasino M, Banks L (2013) Interactions between E6AP and E6 proteins from alpha and beta HPV types. Virology 435(2):357–362

    CAS  PubMed  Google Scholar 

  19. Sakai H, Ohuchida K, Mizumoto K, Cui L, Nakata K, Toma H, Nagai E, Tanaka M (2011) Inhibition of p600 expression suppresses both invasiveness and anoikis resistance of gastric cancer. Ann Surg Oncol 18:2057–2065

    PubMed Central  PubMed  Google Scholar 

  20. Shim SY, Wang J, Asada N, Neumayer G, Tran HC, Ishiguro K-I, Sanada K, Nakatani Y, Nguyen MD (2008) Protein 600 is a microtubule/endoplasmic reticulum-associated protein in CNS neurons. J Neurosci 28(14):3604–3614

    CAS  PubMed  Google Scholar 

  21. Belzil C, Neumayer G, Vassilev AP, Yap KL, Konishi H, Rivest S, Sanada K, Ikura M, Nakatani Y, Nguyen MD (2013) A Ca2+-dependent mechanism of neuronal survival mediated by the microtubule-associated protein p600. J Biol Chem 288:24452–24464

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Belzil C, Asada N, Ishiguro K, Nakaya T, Parsons K, Pendolino V, Neumayer G, Mapelli M, Nakatani Y, Sanada K, Nguyen MD (2014) p600 regulates spindle orientation in apical neural progenitors and contributes to neurogenesis in the developing neocortex. Biol Open 3:475–485

    PubMed Central  PubMed  Google Scholar 

  23. Belzil C, Ramos T, Sanada K, Colicos MA, Nguyen MD (2014) p600 stabilizes microtubules to prevent the aggregation of CaMKIIα during photoconductive stimulation. Cell Mol Biol Lett 19(3):381–392

    CAS  PubMed  Google Scholar 

  24. Blencowe BJ (2006) Alternative splicing: new insights from global analyses. Cell 126(1):37–47

    CAS  PubMed  Google Scholar 

  25. Kandel ER, Dudai Y, Mayford MR (2014) The molecular and systems biology of memory. Cell 157:163–186

    CAS  PubMed  Google Scholar 

  26. Saper CB (2013) The central circadian timing system. Curr Opin Neurobiol 23:747–751

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Dehmelt L, Halpain S (2005) The MAP2/Tau family of microtubule-associated proteins. Genome Biol 6(1):204

    PubMed Central  PubMed  Google Scholar 

  28. Hoeflich KP, Ikura M (2002) Calmodulin in action: diversity in target recognition and activation mechanisms 108(6):739–742

    CAS  Google Scholar 

  29. Gotz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6(10):777–788

    PubMed  Google Scholar 

  30. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Rakic P, Ayoub AE, Breunig JJ, Dominguez MH (2009) Decision by division: making cortical maps. Trends Neurosci 32(5):291–301

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Paridaen JT, Huttner WB (2014) Neurogenesis during development of the vertebrate central nervous system. EMBO Rep 15(4):351–364

    CAS  PubMed  Google Scholar 

  33. Kriegstein AR, Noctor SC (2004) Patterns of neuronal migration in the embryonic cortex. Trends Neurosci 27(7):392–399

    CAS  PubMed  Google Scholar 

  34. Ayala R, Shu T, Tsai LH (2007) Trekking across the brain: the journey of neuronal migration. Cell 128(1):29–43

    CAS  PubMed  Google Scholar 

  35. Nadarajah B, Parnavelas JG (2002) Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 3(6):423–432

    CAS  PubMed  Google Scholar 

  36. Caviness VS (1982) Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H]thymidine autoradiography. Dev Brain Res 4:293–302

    Google Scholar 

  37. Rakic P (1982) Early developmental events: cell lineages, acquisition of neuronal positions, and areal and laminar development. Neurosci Res Program Bull 20(4):439–451

    CAS  PubMed  Google Scholar 

  38. Fietz SA, Huttner WB (2011) Cortical progenitor expansion, self-renewal and neurogenesis—a polarized perspective. Curr Opin Neurobiol 21:23–35

    CAS  PubMed  Google Scholar 

  39. Lancaster MA, Knoblich JA (2012) Spindle orientation in mammalian cerebral cortical development. Curr Opin Neurobiol 22:737–746

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Sessa A, Mao CA, Colasante G, Nini A, Klein WH, Broccoli V (2010) Tbr2-positive intermediate (basal) neuronal progenitors safeguard cerebral cortex expansion by controlling amplification of pallial glutamatergic neurons and attraction of subpallial GABAergic interneurons. Genes Dev 24(16):1816–1826

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Postiglione MP, Jüschke C, Xie Y, Haas GA, Charalambous C, Knoblich JA (2011) Mouse inscuteable induces apical-basal spindle orientation to facilitate intermediate progenitor generation in the developing neocortex. Neuron 72(2):269–284

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Sasaki S, Mori D, Toyo-oka K, Chen A, Garrett-Beal L, Muramatsu M, Miyagawa S, Hiraiwa N, Yoshiki A, Wynshaw-Boris A, Hirotsune S (2005) Complete loss of Ndel1 results in neuronal migration defects and early embryonic lethality. Mol Cell Biol 25(17):7812–7827

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Hippenmeyer S, Youn YH, Moon HM, Miyamichi K, Zong H, Wynshaw-Boris A, Luo L (2010) Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration. Neuron 68(4):695–709

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Pramparo T, Libiger O, Jain S, Li H, Youn YH, Hirotsune S, Schork NJ, Wynshaw-Boris A (2011) Global developmental gene expression and pathway analysis of normal brain development and mouse models of human neuronal migration defects. PLoS Genet 7(3):e1001331

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Yingling J, Youn YH, Darling D, Toyo-oka K, Pramparo T, Hirotsune S, Wynshaw-Boris A (2008) Neuroepithelial stem cell proliferation requires LIS1 for precise spindle orientation and symmetric division. Cell 132:474–486

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Moon HM, Youn YH, Pemble H, Yingling J, Wittmann T, Wynshaw-Boris A (2014) LIS1 controls mitosis and mitotic spindle organization via the LIS1-NDEL1–Dynein complex. Hum Mol Genet 23(2):449–466

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Bonner MK, Poole DS, Xu T, Sarkeshik A, Yates JR III, Skop AR (2011) Mitotic spindle proteomics in Chinese hamster ovary cells. PLoS ONE 6(5):e20489

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Hirano S, Takeichi M (2012) Cadherins in brain morphogenesis and wiring. Physiol Rev 92:597–634

    CAS  PubMed  Google Scholar 

  49. den Elzen N, Buttery CV, Maddugoda MP, Ren G, Yap AS (2009) Cadherin adhesion receptors orient the mitotic spindle during symmetric cell division in mammalian epithelia. Mol Biol Cell 20:3740–3750

    Google Scholar 

  50. Lechler T, Fuchs E (2005) Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437:275–280

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Kulukian A, Fuchs E (2013) Spindle orientation and epidermal morphogenesis. Philos Trans R Soc Lond B Biol Sci 368:20130016

    PubMed Central  PubMed  Google Scholar 

  52. Toyoshima F, Nishida E (2007) Spindle orientation in animal cell mitosis: roles of integrin in the control of spindle axis. J Cell Physiol 213:407–411

    CAS  PubMed  Google Scholar 

  53. Pagliuca FW, Collins MO, Lichawska A, Zegerman P, Choudhary JS, Pines J (2011) Quantitative proteomics reveals the basis for the biochemical specificity of the cell-cycle machinery. Mol Cell 43:406–417

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Harb G, Vasavada RC, Cobrinik D, Stewart AF (2009) The retinoblastoma protein and its homolog p130 regulate the G1/S transition in pancreatic β-cells. Diabetes 58(8):1852–1862

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Nakaya T, Ishiguro K-I, Belzil C, Rietsch AM, Yu Q, Mizuno S-I, Bronson RT, Geng Y, Nguyen MD, Akashi K, Sicinski P, Nakatani Y (2013) P600 plays essential roles in fetal development. PLoS ONE 8(6):e66269

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Goncharov T, Niessen K, de Almagro MC, Izrael-Tomasevic A, Fedorova AV, Varfolomeev E, Arnott D, Deshayes K, Kirkpatrick DS, Vucic D (2013) OTUB1 modulates c-IAP1 stability to regulate signaling pathways. EMBO J 32(8):1103–1114

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Choi YE, Butterworth M, Malladi S, Duckett CS, Cohen GM, Bratton SB (2009) The E3 ubiquitin ligase cIAP1 binds and ubiquitinates caspase-3 and -7 via unique mechanisms at distinct steps in their processing. J Biol Chem 284:12772–12782

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Chu ZL, McKinsey TA, Liu L, Gentry JJ, Malim MH, Ballard DW (1997) Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-κB control. PNAS 94(19):10057–10062

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Bahk YY, Lee J, Cho I-H, Lee H-W (2010) An analysis of an interactome for apoptosis factor, Ei24/PIG8, using the inducible expression system and shotgun proteomics. J Proteome Res 9:5270–5283

    CAS  PubMed  Google Scholar 

  60. Zhao X, Ayer RE, Davis SL, Ames SJ, Florence B, Torchinsky C, Liou JS, Shen L, Spanjaard RA (2005) Apoptosis factor EI24/PIG8 is a novel endoplasmic reticulum-localized Bcl-2-binding protein which is associated with suppression of breast cancer invasiveness. Cancer Res 65(6):2125–2129

    CAS  PubMed  Google Scholar 

  61. Gu Z, Flemington C, Chittenden T, Zambetti GP (2000) ei24, a p53 response gene involved in growth suppression and apoptosis. Mol Cell Biol 20(1):233–241

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Burns TF, Bernhard EJ, El-Deiry WS (2001) Tissue specific expression of p53 target genes suggests a key role for KILLER/DR5 in p53-dependent apoptosis in vivo. Oncogene 20(34):4601–4612

    CAS  PubMed  Google Scholar 

  63. Culmsee C, Mattson MP (2005) p53 in neuronal apoptosis. Biochem Biophys Res Commun 331:761–777

    CAS  PubMed  Google Scholar 

  64. Tasaki T, Kim ST, Zakrzewska A, Lee BE, Kang MJ, Yoo YD, Cha-Molstad HJ, Hwang J, Soung NK, Sung KS, Kim S-H, Nguyen MD, Sun M, Yi EC, Kim BY, Kwon YT (2013) UBR box N-recognin-4 (UBR4), an N-recognin of the N-end rule pathway, and its role in yolk sac vascular development and autophagy. PNAS 110(10):3800–3805

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Goda Y, Colicos M (2006) Photoconductive stimulation of neurons cultured on silicon wafers. Nat Protoc 1:461–467

    CAS  PubMed  Google Scholar 

  66. Roos-Mattjus P, Sistonen L (2004) The ubiquitin–proteasome pathway. Ann Med 36(4):285–295

    CAS  PubMed  Google Scholar 

  67. Choi AMK, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368(7):651–662

    CAS  PubMed  Google Scholar 

  68. Mizushima N (2006) The pleiotropic role of autophagy: from protein metabolism to bactericide. Cell Death Differ 12:1535–1541

    Google Scholar 

  69. Lin R, Tao R, Gao X, Li T, Zhou X, Guan K-L, Xiong Y, Lei Q-Y (2013) Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol Cell 51:506–518

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Radhakrishnan VM, Ramalingam R, Larmonier CB, Thurston RD, Laubitz D, Midura-Kiela MT, McFadden R-MT, Kuro-o M, Kiela PR, Ghishan FK (2013) Post-translational loss of renal TRPV5 calcium channel expression, Ca2+ wasting, and bone loss in experimental colitis. Gastroenterology 145(3):613–624

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Yamano K, Youle RJ (2013) PINK1 is degraded through the N-end rule pathway. Autophagy 9(11):1758–1769

    PubMed Central  CAS  PubMed  Google Scholar 

  72. An JY, Seo JW, Tasaki T, Lee MJ, Varshavsky A, Kwon YT (2006) Impaired neurogenesis and cardiovascular development in mice lacking the E3 ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Proc Natl Acad Sci 103(16):6212–6217

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Saunders DN, Hird SL, Withington SL, Dunwoodie SL, Henderson MJ, Biben C, Sutherland RL, Ormandy CJ, Watts CK (2004) Edd, the murine hyperplastic disc gene, is essential for yolk sac vascularization and chorioallantoic fusion. Mol Cell Biol 24(16):7225–7234

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Tasaki T, Sohr R, Xia Z, Hellweg R, Hörtnagl H, Varshavsky A, Kwon YT (2007) Biochemical and genetic studies of UBR3, a ubiquitin ligase with a function in olfactory and other sensory systems. J Biol Chem 282(25):18510–18520

    CAS  PubMed  Google Scholar 

  75. Hardisty RE, Erven A, Logan K, Morse S, Guionaud S, Sancho-Oliver S, Hunter AJ, Brown SD, Steel KP (2003) The deaf mouse mutant Jeff (Jf) is a single gene model of otitis media. J Assoc Res Otolaryngol 4(2):130–138

    PubMed Central  PubMed  Google Scholar 

  76. Ling HH, Beaulé C, Chiang CK, Tian R, Figeys D, Cheng HY (2014) Time-of-day- and light-dependent expression of ubiquitin protein ligase E3 component N-recognin 4 (UBR4) in the suprachiasmatic nucleus circadian clock. PLoS ONE 9(8):e103103

    PubMed Central  PubMed  Google Scholar 

  77. Zhang EE, Kay SA (2010) Clocks not winding down: unravelling circadian networks. Nat Rev Mol Cell Biol 11:764–776

    CAS  PubMed  Google Scholar 

  78. Partch CL, Green CB, Takahashi JS (2014) Molecular architecture of the mammalian circadian clock. Trends Cell Biol 24(2):90–99

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Pan PY, Yue Z (2014) Genetic causes of Parkinson’s disease and their links to autophagy regulation. Parkinsonism Relat Disord 20(S1):S154–S5157

    PubMed  Google Scholar 

  80. Najmabadi H, Hu H, Garshasbi M, Zemojtel T, Abedini SS, Chen W, Hosseini M, Behjati F, Haas S, Jamali P, Zecha A, Mohseni M, Püttmann L, Vahid LN, Jensen C, Moheb LA, Bienek M, Larti F, Mueller I, Weissmann R, Darvish H, Wrogemann K, Hadavi V, Lipkowitz B, Esmaeeli-Nieh S, Wieczorek D, Kariminejad R, Firouzabadi SG, Cohen M, Fattahi Z, Rost I, Mojahedi F, Hertzberg C, Dehghan A, Rajab A, Banavandi MJ, Hoffer J, Falah M, Musante L, Kalscheuer V, Ullmann R, Kuss AW, Tzschach A, Kahrizi K, Ropers HH (2011) Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 478:57–63

    CAS  PubMed  Google Scholar 

  81. Zenker M, Mayerle J, Reis A, Lerch MM (2006) Genetic basis and pancreatic biology of Johanson-Blizzard syndrome. Endocrinol Metab Clinc North Am 35:243–253

    CAS  Google Scholar 

  82. Daentl DL, Frias JL, Gilbert EF, Opitz JM (1979) The Johanson-Blizzard Syndrome: case report and autopsy findings. Am J Med Genet 3:129–135

    CAS  PubMed  Google Scholar 

  83. Kato T, Tamiya G, Koyama S, Nakamura T, Makino S, Arawaka S, Kawanami T, Tooyama I (2012) UBR5 gene mutation is associated with familial adult myoclonic epilepsy in a Japanese family. Int Sch Res Netw Neurol 2012:508308

    Google Scholar 

  84. Lipska BK, Peters T, Hyde TM, Halim N, Horowitz C, Mitkus S, Weickert CS, Matsumoto M, Sawa A, Straub RE, Vakkalanka R, Herman MM, Weinberger DR, Kleinman JE (2006) Expression of DISC1 binding partners is reduced in schizophrenia and associated with DISC1 SNPs. Hum Mol Genet 15(8):1245–1258

    CAS  PubMed  Google Scholar 

  85. Cardoso C, Leventer RJ, Ward HL, Toyo-oka K, Chung J, Gross A, Martin CL, Allanson J, Pilz DT, Olney AH, Mutchinick OM, Hirotsune S, Wynshaw-Boris A, Dobyns WB, Ledbetter DH (2003) Refinement of a 400-kb critical region allows genotypic differentiation between isolated lissencephaly, Miller–Dieker syndrome, and other phenotypes secondary to deletions of 17p13.3. Am J Hum Genet 72(4):918–930

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Bruno DL, Anderlid B-M, Lindstrand A, van Ravenswaaij-Arts C, Ganesamoorthy D, Lundin J, Martin CL, Douglas J, Nowak C, Adam MP, Kooy RF, Van der Aa N, Reyniers E, Vandeweyer G, Stolte-Dijkstra I, Dijkhuizen T, Yeung A, Delatycki M, Borgstrom B, Thelin L, Cardoso C, van Bon B, Pfundt R, de Vries BBA, Wallin A, Amor DJ, James PA, Slater HR, Schoumans J (2010) Further molecular and clinical delineation of co-locating 17p13.3 microdeletions and microduplications that show distinctive phenotypes. J Med Genet 47(5):299–311

    CAS  PubMed  Google Scholar 

  87. Bi W, Sapir T, Shchelochkov OA, Zhang F, Withers MA, Hunter JV, Levy T, Shinder V, Peiffer DA, Gunderson KL, Nezarati MM, Shotts VA, Amato SS, Savage SK, Harris DJ, Day-Salvatore D-L, Horner M, Lu X-Y, Sahoo T, Yanagawa Y, Beaudet AL, Cheung SW, Martinez S, Lupski JR, Reiner O (2008) Increased LIS1 expression affects human and mouse brain development. Nat Genet 41(2):168–177

    Google Scholar 

  88. Roos L, Jønch AE, Kjaergaard S, Taudorf K, Simonsen H, Hamborg-Petersen B, Brøndum-Nielsen K, Kirchhoff M (2009) A new microduplication syndrome encompassing the region of the Miller–Dieker (17p13 deletion) syndrome. J Med Genet 46(10):703–710

    CAS  PubMed  Google Scholar 

  89. Nagamani SC, Zhang F, Shchelochkov OA, Bi W, Ou Z, Scaglia F, Probst FJ, Shinawi M, Eng C, Hunter JV, Sparagana S, Lagoe E, Fong CT, Pearson M, Doco-Fenzy M, Landais E, Mozelle M, Chinault AC, Patel A, Bacino CA, Sahoo T, Kang SH, Cheung SW, Lupski JR, Stankiewicz P (2009) Microdeletions including YWHAE in the Miller-Dieker syndrome region on chromosome 17p13.3 result in facial dysmorphisms, growth restriction, and cognitive impairment. J Med Genet 46(12):825–833

    CAS  PubMed  Google Scholar 

  90. Mignon-Ravix C, Cacciagli P, El-Waly B, Moncla A, Milh M, Girard N, Chabrol B, Philip N, Villard L (2010) Deletion of YWHAE in a patient with periventricular heterotopias and pronounced corpus callosum hypoplasia. J Med Genet 47(2):132–136

    CAS  PubMed  Google Scholar 

  91. Capra V, Mirabelli-Badenier M, Stagnaro M, Rossi A, Tassano E, Gimelli S, Gimelli G (2012) Identification of a rare 17p13.3 duplication including the BHLHA9 and YWHAE genes in a family with developmental delay and behavioural problems. BMC Med Genet 13:93

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Liu JYW, Kasperaviciute D, Martinian L, Thom M, Sisodiya SM (2012) Neuropathology of 16p13.11 deletion in epilepsy. PLoS ONE 7(4):e34813

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Petrovski S, Wang Q, Heinzen EL, Allen AS, Goldstein DB (2013) Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet 9(8):e1003709

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Kang S-HL, Scheffer A, Ou Z, Li J, Scaglia F, Belmont J, Lalani SR, Roeder E, Enciso V, Braddock S, Buchholz J, Vacha S, Chinault AC, Cheung SW, Bacino CA (2007) Identification of proximal 1p36 deletions using array-CGH: a possible new syndrome. Clin Genet 72(4):329–338

    PubMed  Google Scholar 

  95. Shimojima K, Paez MT, Kurosawa K, Yamamoto T (2009) Proximal interstitial 1p36 deletion syndrome: the most proximal 3.5-Mb microdeletion identified on a dysmorphic and mentally retarded patient with inv(3)(p 14.1 q26.2). Brain Dev 31(8):629–633

    PubMed  Google Scholar 

  96. Cooper GM, Coe BP, Girirajan S, Rosenfeld JA, Vu TH, Baker C, Williams C, Stalker H, Hamid R, Hannig V, Abdel-Hamid H, Bader P, McCracken E, Niyazov D, Leppig K, Thiese H, Hummel M, Alexander N, Gorski J, Kussmann J, Shashi V, Johnson K, Rehder C, Ballif BC, Shaffer LG, Eichler EE (2011) A copy number variation morbidity map of developmental delay. Nat Genet 43(9):838–846

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Kaminsky EB, Kaul V, Paschall J, Church DM, Bunke B, Kunig D, Moreno-De- Luca D, Moreno-De-Luca A, Mulle JG, Warren ST, Richard G, Compton JG, Fuller AE, Gliem TJ, Huang S, Collinson MN, Beal SJ, Ackley T, Pickering DL, Golden DM, Aston E, Whitby H, Shetty S, Rossi MR, Rudd MK, South ST, Brothman AR, Sanger WG, Iyer RK, Crolla JA, Thorland EC, Aradhya S, Ledbetter DH, Martin CL (2011) An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genet Med 13(9):777–784

    PubMed Central  PubMed  Google Scholar 

  98. Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, Church DM, Crolla JA, Eichler EE, Epstein CJ, Faucett WA, Feuk L, Friedman JM, Hamosh A, Jackson L, Kaminsky EB, Kok K, Krantz ID, Kuhn RM, Lee C, Ostell JM, Rosenberg C, Scherer SW, Spinner NB, Stavropoulos DJ, Tepperberg JH, Thorland EC, Vermeesch JR, Waggoner DJ, Watson MS, Martin CL, Ledbetter DH (2010) Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 86(5):749–864

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Vulto-van Silfhout AT, Hehir-Kwa JY, van Bon BW, Schuurs-Hoeijmakers JH, Meader S, Hellebrekers CJ, Thoonen IJ, de Brouwer AP, Brunner HG, Webber C, Pfundt R, de Leeuw N, de Vries BB (2013) Clinical significance of de novo and inherited copy-number variation. Hum Mutat 34(12):1679–1687

    CAS  PubMed  Google Scholar 

  100. Wong KK, deLeeuw RJ, Dosanjh NS, Kimm LR, Cheng Z, Horsman DE, MacAulay C, Ng RT, Brown CJ, Eichler EE, Lam WL (2007) A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet 80(1):91–104

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Mattson MP (2007) Calcium and neurodegeneration. Aging Cell 6:337–350

    CAS  PubMed  Google Scholar 

  102. Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflüg Arch Eur J Physiol 460:525–542

    CAS  Google Scholar 

  103. Chu CT (2006) Autophagic stress in neuronal injury and disease. J Neuropathol Exp Neurol 65(5):423–432

    PubMed Central  PubMed  Google Scholar 

  104. Liu CL, Chen S, Dietrich D, Hu BR (2008) Changes in autophagy after traumatic brain injury. J Cereb Blood Flow Metab 28:674–683

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Wishart TM, Rooney TM, Lamont DJ, Wright AK, Morton AJ, Jackson M, Freeman MR, Gillingwater TH (2012) Combining comparative proteomics and molecular genetics uncovers regulators of synaptic and axonal stability and degeneration in vivo. PLoS Genet 8(8):e1002936

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Conroy J, McGettigan P, Murphy R, Webb D, Murphy SM, McCoy B, Albertyn C, McCreary D, McDonagh C, Walsh O, Lynch S, Ennis S (2014) A novel locus for episodic ataxia: UBR4 the likely candidate. Eur J Hum Genet 22(4):505–510

    CAS  PubMed  Google Scholar 

  107. Zhang X, Zhou JY, Chin MH, Schepmoes AA, Petyuk VA, Weitz KK, Petritis BO, Monroe ME, Camp DG, Wood SA, Melega WP, Bigelow DJ, Smith DJ, Qian WJ, Smith RD (2010) Region-specific protein abundance changes in the brain of MPTP-induced Parkinson’s disease mouse model. J Proteome Res 9(3):1496–1509

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Choi WS, Jeong B-C, Joo YJ, Lee M-R, Kim J, Eck MJ J, Song HS (2010) Structural basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases. Nat Struct Mol Biol 17(10):1175–1182

    CAS  PubMed  Google Scholar 

  109. Matta-Camacho E, Kozlov G, Li FF, Gehring K (2010) Structural basis of substrate recognition and specificity in the N-end rule pathway. Nat Struct Mol Biol 17(10):1182–1188

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work on p600 is supported by the Canadian Institutes of Health Research (CIHR) (MDN) and Alberta Innovates Health Solutions (AIHS) (MDN). MDN held a Career Development Award from the Human Frontier Science Program Organization, a New Investigator Award from the CIHR and a Scholar Award from the AIHS. KP received an AIHS scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh Dang Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parsons, K., Nakatani, Y. & Nguyen, M.D. p600/UBR4 in the central nervous system. Cell. Mol. Life Sci. 72, 1149–1160 (2015). https://doi.org/10.1007/s00018-014-1788-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1788-8

Keywords

Navigation