Skip to main content

NGF/P75 in Cell Cycle and Tetraploidy

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Neurotoxicity, neurodegeneration, and other disorders affecting neuron survival are often related to cell cycle reentry in neurons. Traditionally, cell cycle reentry of these postmitotic cells has been thought to be associated with apoptosis. Nevertheless, cell cycle reentry and DNA synthesis in neurons could also lead to tetraploidy which may explain long-lasting neurodegenerative processes. During development, a subpopulation of newborn neurons reactivates the cell cycle and becomes tetraploid in response to p75NTR activation. These neurons enlarge their cell bodies and increase their dendritic trees, thus generating specific neuronal populations that innervate particular areas. Pathological states in the nervous system could also lead to p75NTR-dependent neuronal tetraploidy. De novo tetraploid neurons might become structurally and functionally altered, thus leading to neurodegeneration at late stages of the disease. This chapter describes what is currently known about the interplay between p75NTR and the cell cycle, stressing the role played by different p75NTR interactors, including the MAGE and Bex1/NADE adaptor proteins and the transcription factors SC1, NRIF, and Sall2, in cell cycle regulation. The chapter also discusses on the effects of p75NTR, as a cell cycle regulator, in neural stem cell proliferation, neurogenesis, and neuronal tetraploidization, as well as on the connection of p75NTR in pathology, including its putative effects in neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Aβ:

Amyloid-β

BDNF:

Brain-derived neurotrophic factor

Bex-1:

Brain-expressed X-linked 1

BrdU:

Bromodeoxyuridine

cdk:

Cyclin-dependent kinase

CMAGE:

Chicken MAGE

CNS:

Central nervous system

Dlxin-1:

Dlx/Msx-interacting MAGE/Necdin family protein

E2F1:

E2 promoter-binding factor-1

EGFP:

Enhanced green fluorescent protein

ERK:

Extracellular signal-regulated kinase

JNK:

c-Jun N-terminal kinase

MAGE:

Melanoma antigen

MAPK:

Mitogen-activated protein kinase

NADE:

p75NTR-associated cell death executor

NGF:

Nerve growth factor

NRAGE:

Neurotrophin receptor-interacting MAGE homolog

NRIF:

Neurotrophin receptor-interacting factor

NT3:

Neurotrophin-3

p75ICD :

p75NTR intracellular domain

p75NTR :

p75 neurotrophin receptor

PCNA:

Proliferating cell nuclear marker

PNS:

Peripheral nervous system

PR/SET:

Positive regulatory/suppressor of variegation, enhancer of zeste, trithorax

Rb:

Retinoblastoma

RGCs:

Retinal ganglion cells

Sall2:

Sal-like protein 2

SC1:

Schwann cell factor 1

SGZ:

Subgranular zone

SVZ:

Subventricular zone

TNF:

Tumor necrosis factor

Trk:

Tropomyosin-related kinase

References

  • Ambrosino, C., & Nebreda, A. R. (2001). Cell cycle regulation by p38 MAP kinases. Biology of the Cell, 93, 47–51.

    CAS  PubMed  Google Scholar 

  • Anatskaya, O. V., & Vinogradov, A. E. (2007). Genome multiplication as adaptation to tissue survival: evidence from gene expression in mammalian heart and liver. Genomics, 89, 70–80.

    CAS  PubMed  Google Scholar 

  • Arendt, T., Brückner, M. K., Mosch, B., & Lösche, A. (2010). Selective cell death of hyperploid neurons in Alzheimer’s disease. The American Journal of Pathology, 177, 15–20.

    PubMed Central  PubMed  Google Scholar 

  • Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z., & Lindvall, O. (2002). Neuronal replacement from endogenous precursors in the adult brain after stroke. Nature Medicine, 8, 963–970.

    CAS  PubMed  Google Scholar 

  • Bannerman, P. G., & Pleasure, D. (1993). Protein growth factor requirements of rat neural crest cells. Journal of Neuroscience Research, 36, 46–57.

    CAS  PubMed  Google Scholar 

  • Barde, Y. A., Edgar, D., & Thoenen, H. (1982). Purification of a new neurotrophic factor from mammalian brain. The EMBO Journal, 1, 549–553.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barker, P. A., & Salehi, A. (2002). The MAGE proteins: emerging roles in cell cycle progression, apoptosis, and neurogenetic disease. Journal of Neuroscience Research, 67, 705–712.

    CAS  PubMed  Google Scholar 

  • Becker, M., Lavie, V., & Solomon, B. (2007). Stimulation of endogenous neurogenesis by anti-EFRH immunization in a transgenic mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 104, 1691–1696.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benzel, I., Barde, Y. A., & Casademunt, E. (2001). Strain-specific complementation between NRIF1 and NRIF2, two zinc finger proteins sharing structural and biochemical properties. Gene, 281, 19–30.

    CAS  PubMed  Google Scholar 

  • Berkemeier, L. R., Winslow, J. W., Kaplan, D. R., Nikolics, K., Goeddel, D. V., & Rosenthal, A. (1991). Neurotrophin-5: a novel neurotrophic factor that activates trk and trkB. Neuron, 7, 857–866.

    CAS  PubMed  Google Scholar 

  • Bernabeu, R. O., & Longo, F. M. (2010). The p75 neurotrophin receptor is expressed by adult mouse dentate progenitor cells and regulates neuronal and non-neuronal cell genesis. BMC Neuroscience, 11, 136.

    PubMed Central  PubMed  Google Scholar 

  • Burns, K. A., Ayoub, A. E., Breunig, J. J., Adhami, F., Weng, W. L., Colbert, M. C., Rakic, P., & Kuan, C. Y. (2007). Nestin-CreER mice reveal DNA synthesis by nonapoptotic neurons following cerebral ischemia hypoxia. Cerebral Cortex, 17, 2585–2592.

    PubMed  Google Scholar 

  • Byrnes, K. R., Stoica, B. A., Fricke, S., Di Giovanni, S., & Faden, A. I. (2007). Cell cycle activation contributes to post-mitotic cell death and secondary damage after spinal cord injury. Brain, 130, 2977–2992.

    PubMed  Google Scholar 

  • Calzà, L., Giardino, L., Pozza, M., Bettelli, C., Micera, A., & Aloe, L. (1998). Proliferation and phenotype regulation in the subventricular zone during experimental allergic encephalomyelitis: in vivo evidence of a role for nerve growth factor. Proceedings of the National Academy of Sciences of the United States of America, 95, 3209–3214.

    PubMed Central  PubMed  Google Scholar 

  • Casaccia-Bonnefil, P., Carter, B. D., Dobrowsky, R. T., & Chao, M. V. (1996). Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature, 383, 716–719.

    CAS  PubMed  Google Scholar 

  • Casademunt, E., Carter, B. D., Benzel, I., Frade, J. M., Dechant, G., & Barde, Y. A. (1999). The zinc finger protein NRIF interacts with the neurotrophin receptor p75NTR and participates in programmed cell death. The EMBO Journal, 18, 6050–6061.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Catts, V. S., Al-Menhali, N., Burne, T. H., Colditz, M. J., & Coulson, E. J. (2008). The p75 neurotrophin receptor regulates hippocampal neurogenesis and related behaviours. The European Journal of Neuroscience, 28, 883–892.

    PubMed  Google Scholar 

  • Chao, M. V., Bothwell, M. A., Ross, A. H., Koprowski, H., Lanahan, A. A., Buck, C. R., & Sehgal, A. (1986). Gene transfer and molecular cloning of the human NGF receptor. Science, 232, 518–521.

    CAS  PubMed  Google Scholar 

  • Chen, L. W., Yung, K. K., Chan, Y. S., Shum, D. K., & Bolam, J. P. (2008). The proNGF-p75NTR-sortilin signalling complex as new target for the therapeutic treatment of Parkinson’s disease. CNS & Neurological Disorders Drug Targets, 7, 512–523.

    CAS  Google Scholar 

  • Chittka, A., & Chao, M. V. (1999). Identification of a zinc finger protein whose subcellular distribution is regulated by serum and nerve growth factor. Proceedings of the National Academy of Sciences of the United States of America, 96, 10705–10710.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chittka, A., Arevalo, J. C., Rodriguez-Guzman, M., Pérez, P., Chao, M. V., & Sendtner, M. (2004). The p75NTR-interacting protein SC1 inhibits cell cycle progression by transcriptional repression of cyclin E. The Journal of Cell Biology, 164, 985–996.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coggeshall, R. E., Yaksta, B. A., & Swartz, F. J. (1970). A cytophotometric analysis of the DNA in the nucleus of the giant cell, R-2, in Aplysia. Chromosoma, 32, 205–212.

    CAS  PubMed  Google Scholar 

  • Cohen, S., Levi-Montalcini, R., & Hamburger, V. (1954). A nerve growth-stimulating factor isolated from sarcom AS 37 and 180. Proceedings of the National Academy of Sciences of the United States of America, 40, 1014–1018.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Colditz, M. J., Catts, V. S., Al-menhali, N., Osborne, G. W., Bartlett, P. F., & Coulson, E. J. (2010). p75 neurotrophin receptor regulates basal and fluoxetine-stimulated hippocampal neurogenesis. Experimental Brain Research, 200, 161–167.

    CAS  PubMed  Google Scholar 

  • Costantini, C. F., Rossi, E., Formaggio, R., Bernardoni, D., Cecconi, V., & Della-Bianca, V. (2005). Characterization of the signaling pathway downstream p75 neurotrophin receptor involved in beta-amyloid peptide-dependent cell death. Journal of Molecular Neuroscience, 25, 141–156.

    CAS  PubMed  Google Scholar 

  • Curtis, M. A., Penney, E. B., Pearson, A. G., van Roon-Mom, W. M., Butterworth, N. J., Dragunow, M., Connor, B., & Faull, R. L. (2003). Increased cell proliferation and neurogenesis in the adult human Huntington’s disease brain. Proceedings of the National Academy of Sciences of the United States of America, 100, 9023–9027.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dechant, G., & Barde, Y. A. (2002). The neurotrophin receptor p75NTR: novel functions and implications for diseases of the nervous system. Nature Neuroscience, 5, 1131–1136.

    CAS  PubMed  Google Scholar 

  • Di Giovanni, S., Movsesyan, V., Ahmed, F., Cernak, I., Schinelli, S., Stoica, B., & Faden, A. I. (2005). Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 102, 8333–8888.

    PubMed Central  PubMed  Google Scholar 

  • Edgar, B. A., & Orr-Weaver, T. L. (2001). Endoreplication cell cycles: more for less. Cell, 105, 297–306.

    CAS  PubMed  Google Scholar 

  • Fahnestock, M., Michalski, B., Xu, B., & Coughlin, M. D. (2001). The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer’s disease. Molecular and Cellular Neurosciences, 18, 210–220.

    CAS  PubMed  Google Scholar 

  • Fallon, J., Reid, S., Kinyamu, R., Opole, I., Opole, R., Baratta, J., Korc, M., Endo, T. L., Duong, A., Nguyen, G., Karkehabadhi, M., Twardzik, D., Patel, S., & Loughlin, S. (2000). In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proceedings of the National Academy of Sciences of the United States of America, 97, 14686–14691.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandez-Fernandez, M. R., Ferrer, I., & Lucas, J. J. (2011). Impaired ATF6α processing, decreased Rheb and neuronal cell cycle re-entry in Huntington’s disease. Neurobiology of Disease, 41, 23–32.

    CAS  PubMed  Google Scholar 

  • Ferraiuolo, L., Heath, P. R., Holden, H., Kasher, P., Kirby, J., & Shaw, P. J. (2007). Microarray analysis of the cellular pathways involved in the adaptation to and progression of motor neuron injury in the SOD1 G93A mouse model of familial ALS. The Journal of Neuroscience, 27, 9201–9219.

    CAS  PubMed  Google Scholar 

  • Foltz, G., Ryu, G. Y., Yoon, J. G., Nelson, T., Fahey, J., Frakes, A., Lee, H., Field, L., Zander, K., Sibenaller, Z., Ryken, T. C., Vibhakar, R., Hood, L., & Madan, A. (2006). Genome-wide analysis of epigenetic silencing identifies BEX1 and BEX2 as candidate tumor suppressor genes in malignant glioma. Cancer Research, 66, 6665–6674.

    CAS  PubMed  Google Scholar 

  • Frade, J. M. (2000). Unscheduled re-entry into the cell cycle induced by NGF precedes cell death in nascent retinal neurones. Journal of Cell Science, 113, 1139–1148.

    CAS  PubMed  Google Scholar 

  • Frade, J. M. (2005). Nuclear translocation of the p75 neurotrophin receptor cytoplasmic domain in response to neurotrophin binding. The Journal of Neuroscience, 25, 1407–1411.

    CAS  PubMed  Google Scholar 

  • Frade, J. M., & Barde, Y. A. (1999). Genetic evidence for cell death mediated by nerve growth factor and the neurotrophin receptor p75 in the developing mouse retina and spinal cord. Development, 126, 683–690.

    CAS  PubMed  Google Scholar 

  • Frade, J. M., & López-Sánchez, N. (2010). A novel hypothesis for Alzheimer disease based on neuronal tetraploidy induced by p75NTR. Cell Cycle, 9, 1934–1941.

    CAS  PubMed  Google Scholar 

  • Frade, J. M., Bovolenta, P., Martínez-Morales, J. R., Arribas, A., Barbas, J. A., & Rodríguez-Tébar, A. (1997). Control of early cell death by BDNF in the chick retina. Development, 124, 3313–3320.

    CAS  PubMed  Google Scholar 

  • Fritz, M. D., Mirnics, Z. K., Nylanderm, K. D., & Schor, N. F. (2006). p75NTR enhances PC12 cell tumor growth by a non-receptor mechanism involving downregulation of cyclin D2. Experimental Cell Research, 312, 3287–3297.

    CAS  PubMed  Google Scholar 

  • Gentry, J. J., Rutkoski, N. J., Burke, T. L., & Carter, B. D. (2004). A functional interaction between the p75 neurotrophin receptor interacting factors, TRAF6 and NRIF. The Journal of Biological Chemistry, 279, 16646–16656.

    CAS  PubMed  Google Scholar 

  • Giuliani, A., D’Intino, G., Paradisi, M., Giardino, L., & Calzà, L. (2004). p75NTR-immunoreactivity in the subventricular zone of adult male rats: expression by cycling cells. Journal of Molecular Histology, 35, 749–758.

    CAS  PubMed  Google Scholar 

  • Greenberg, M. E., Xu, B., Lu, B., & Hempstead, B. L. (2009). New insights in the biology of BDNF synthesis and release: implications in CNS function. The Journal of Neuroscience, 29, 12764–12767.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hallböök, F., Ibáñez, C. F., & Persson, H. (1991). Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary. Neuron, 6, 845–858.

    PubMed  Google Scholar 

  • Hapner, S. J., Boeshore, K. L., Large, T. H., & Lefcort, F. (1998). Neural differentiation promoted by truncated trkC receptors in collaboration with p75NTR. Developmental Biology, 201, 90–100.

    CAS  PubMed  Google Scholar 

  • Höglinger, G. U., Breunig, J. J., Depboylu, C., Rouaux, C., Michel, P. P., Alvarez-Fischer, D., Boutillier, A. L., Degregori, J., Oertel, W. H., Rakic, P., Hirsch, E. C., & Hunot, S. (2007). The pRb/E2F cell-cycle pathway mediates cell death in Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 104, 3585–3590.

    PubMed Central  PubMed  Google Scholar 

  • Hohn, A., Leibrock, J., Bailey, K., & Barde, Y. A. (1990). Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature, 344, 339–341.

    CAS  PubMed  Google Scholar 

  • Hosomi, S., Yamashita, T., Aoki, M., & Tohyama, M. (2003). The p75 receptor is required for BDNF-induced differentiation of neural precursor cells. Biochemical and Biophysical Research Communications, 301, 1011–1015.

    CAS  PubMed  Google Scholar 

  • Hu, X. Y., Zhang, H. Y., Qin, S., Xu, H., Swaab, D. F., & Zhou, J. N. (2002). Increased p75NTR expression in hippocampal neurons containing hyperphosphorylated tau in Alzheimer patients. Experimental Neurology, 178, 104–111.

    CAS  PubMed  Google Scholar 

  • Huang, E. J., & Reichardt, L. F. (2001). Neurotrophins: roles in neuronal development and function. Annual Review of Neuroscience, 24, 677–736.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang, Y., Chen, G., Zhang, Y., Lu, L., Liu, S., & Cao, X. (2007). Nerve growth factor promotes TLR4 signaling-induced maturation of human dendritic cells in vitro through inducible p75NTR. Journal of Immunology, 179, 6297–6304.

    CAS  Google Scholar 

  • Jin, H., Pan, Y., Zhao, L., Zhai, H., Li, X., Sun, L., He, L., Chen, Y., Hong, L., Du, Y., & Fan, D. (2007). p75 neurotrophin receptor suppresses the proliferation of human gastric cancer cells. Neoplasia, 9, 471–478.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson, D., Lanahan, A., Buck, C. R., Sehgal, A., Morgan, C., Mercer, E., Bothwell, M., & Chao, M. (1986). Expression and structure of the human NGF receptor. Cell, 47, 545–554.

    CAS  PubMed  Google Scholar 

  • Jones, K. R., & Reichardt, L. F. (1990). Molecular cloning of a human gene that is a member of the nerve growth factor family. Proceedings of the National Academy of Sciences of the United States of America, 87, 8060–8064.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kanning, K. C., Hudson, M., Amieux, P. S., Wiley, J. C., Bothwell, M., & Schecterson, L. C. (2003). Proteolytic processing of the p75 neurotrophin receptor and two homologs generates C-terminal fragments with signaling capability. The Journal of Neuroscience, 23, 5425–5436.

    CAS  PubMed  Google Scholar 

  • Kaplan, D. R., Hempstead, B. L., Martin-Zanca, D., Chao, M. V., & Parada, L. F. (1991). The trk proto-oncogene product: a signal transducing receptor for nerve growth factor. Science, 252, 554–558.

    CAS  PubMed  Google Scholar 

  • Kawaguchi, J., Kano, K., & Naito, K. (2009). Expression profiling of tetraploid mouse embryos in the developmental stages using a cDNA microarray analysis. The Journal of Reproduction and Development, 55, 670–675.

    CAS  PubMed  Google Scholar 

  • Kenchappa, R. S., Zampieri, N., Chao, M. V., Barker, P. A., Teng, H. K., Hempstead, B. L., & Carter, B. D. (2006). Ligand-dependent cleavage of the p75 neurotrophin receptor is necessary for NRIF nuclear translocation and apoptosis in sympathetic neurons. Neuron, 50, 219–232.

    CAS  PubMed  Google Scholar 

  • Kenchappa, R. S., Tep, C., Korade, Z., Urra, S., Bronfman, F. C., Yoon, S. O., & Carter, B. D. (2010). p75 neurotrophin receptor-mediated apoptosis in sympathetic neurons involves a biphasic activation of JNK and up-regulation of tumor necrosis factor-alpha-converting enzyme/ADAM17. The Journal of Biological Chemistry, 285, 20358–20368.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khwaja, F., & Djakiew, D. (2003). Inhibition of cell-cycle effectors of proliferation in bladder tumor epithelial cells by the p75NTR tumor suppressor. Molecular Carcinogenesis, 36, 153–160.

    CAS  PubMed  Google Scholar 

  • Khwaja, F., Tabassum, A., Allen, J., & Djakiew, D. (2006). The p75NTR tumor suppressor induces cell cycle arrest facilitating caspase mediated apoptosis in prostate tumor cells. Biochemical and Biophysical Research Communications, 341, 1184–1192.

    CAS  PubMed  Google Scholar 

  • Klein, R., Jing, S. Q., Nanduri, V., O’Rourke, E., & Barbacid, M. (1991a). The trk proto-oncogene encodes a receptor for nerve growth factor. Cell, 65, 189–197.

    CAS  PubMed  Google Scholar 

  • Klein, R., Nanduri, V., Jing, S. A., Lamballe, F., Tapley, P., Bryant, S., Cordon-Cardo, C., Jones, K. R., Reichardt, L. F., & Barbacid, M. (1991b). The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell, 66, 395–403.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klein, R., Lamballe, F., Bryant, S., & Barbacid, M. (1992). The trkB tyrosine protein kinase is a receptor for neurotrophin-4. Neuron, 8, 947–956.

    CAS  PubMed  Google Scholar 

  • Krygier, S., & Djakiew, D. (2001). The neurotrophin receptor p75NTR is a tumor suppressor in human prostate cancer. Anticancer Research, 21, 3749–3755.

    CAS  PubMed  Google Scholar 

  • Kuan, C. Y., Schloemer, A. J., Lu, A., Burns, K. A., Weng, W. L., Williams, M. T., Strauss, K. I., Vorhees, C. V., Flavell, R. A., Davis, R. J., Sharp, F. R., & Rakic, P. (2004). Hypoxia-ischemia induces DNA synthesis without cell proliferation in dying neurons in adult rodent brain. The Journal of Neuroscience, 24, 10763–10772.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuwako, K., Taniura, H., & Yoshikawa, K. (2004). Necdin-related MAGE proteins differentially interact with the E2F1 transcription factor and the p75 neurotrophin receptor. The Journal of Biological Chemistry, 279, 1703–1712.

    CAS  PubMed  Google Scholar 

  • Lamballe, F., Klein, R., & Barbacid, M. (1991). trkC a new member of the trk family of tyrosine protein kinases is a receptor for neurotrophin-3. Cell, 66, 967–979.

    CAS  PubMed  Google Scholar 

  • Lee, R., Kermani, P., Teng, K. K., & Hempstead, B. L. (2001). Regulation of cell survival by secreted proneurotrophins. Science, 294, 1945–1948.

    CAS  PubMed  Google Scholar 

  • Levi-Montalcini, R., & Hamburger, V. (1951). Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. The Journal of Experimental Zoology, 116, 321–361.

    CAS  PubMed  Google Scholar 

  • Li, H. Y., Say, E. H., & Zhou, X. F. (2007). Isolation and characterization of neural crest progenitors from adult dorsal root ganglia. Stem Cells, 25, 2053–2065.

    CAS  PubMed  Google Scholar 

  • López-Sánchez, N., & Frade, J. M. (2002). Control of the cell cycle by neurotrophins: lessons from the p75 neurotrophin receptor. Histology and Histopathology, 17, 1227–1237.

    PubMed  Google Scholar 

  • López-Sánchez, N., González-Fernández, Z., Niinobe, M., Yoshikawa, K., & Frade, J. M. (2007). Single mage gene in the chicken genome encodes CMage, a protein with functional similarities to mammalian type II Mage proteins. Physiological Genomics, 30, 156–171.

    PubMed  Google Scholar 

  • López-Sánchez, N., Ovejero-Benito, M. C., Borreguero, L., & Frade, J. M. (2011). Control of neuronal ploidy during vertebrate development. Results and Problems in Cell Differentiation, 53, 547–563.

    PubMed  Google Scholar 

  • Lowry, K. S., Murray, S. S., McLean, C. A., Talman, P., Mathers, S., Lopes, E. C., & Cheema, S. S. (2001). A potential role for the p75 low-affinity neurotrophin receptor in spinal motor neuron degeneration in murine and human amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2, 127–134.

    CAS  PubMed  Google Scholar 

  • Lu, B. (2003). Pro-region of neurotrophins: role in synaptic modulation. Neuron, 39, 735–738.

    CAS  PubMed  Google Scholar 

  • Maisonpierre, P. C., Belluscio, L., Squinto, S., Ip, N. Y., Furth, M. E., Lindsay, R. M., & Yancopoulos, G. D. (1990). Neurotrophin-3: a neurotrophic factor related to NGF and BDNF. Science, 247, 1446–1451.

    CAS  PubMed  Google Scholar 

  • Majdan, M., Lachance, C., Gloster, A., Aloyz, R., Zeindler, C., Bamji, S., Bhakar, A., Belliveau, D., Fawcett, J., Miller, F. D., & Barker, P. A. (1997). Transgenic mice expressing the intracellular domain of the p75 neurotrophin receptor undergo neuronal apoptosis. The Journal of Neuroscience, 17, 6988–9698.

    CAS  PubMed  Google Scholar 

  • Manfredi Romanini, M. G., Fraschini, A., & Bernocchi, G. (1973). DNA content and nuclear area in the neurons of the cerebral ganglion in Helix pomatia. Annales d’Histochimie, 18, 49–58.

    CAS  PubMed  Google Scholar 

  • Mi, S., Lee, X., Shao, Z., Thill, G., Ji, B., Relton, J., Levesque, M., Allaire, N., Perrin, S., Sands, B., Crowell, T., Cate, R. L., McCoy, J. M., & Pepinsky, R. B. (2004). LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nature Neuroscience, 7, 221–228.

    CAS  PubMed  Google Scholar 

  • Michalski, B., & Fahnestock, M. (2003). Pro-brain-derived neurotrophic factor is decreased in parietal cortex in Alzheimer’s disease. Brain Research. Molecular Brain Research, 111, 148–154.

    CAS  PubMed  Google Scholar 

  • Morillo, S. M., & Frade, J. M. (2008). Nerve growth factor signaling in neural cancer and metastasis. In G. K. McIntire (Ed.), Nerve growth factor: new research (pp. 203–227). New York: NOVA Science Publishers.

    Google Scholar 

  • Morillo, S. M., Escoll, P., de la Hera, A., & Frade, J. M. (2010). Somatic tetraploidy in specific chick retinal ganglion cells induced by nerve growth factor. Proceedings of the National Academy of Sciences of the United States of America, 107, 109–114.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mosch, B., Morawski, M., Mittag, A., Lenz, D., Tarnok, A., & Arendt, T. (2007). Aneuploidy and DNA replication in the normal human brain and Alzheimer’s disease. The Journal of Neuroscience, 27, 6859–6867.

    CAS  PubMed  Google Scholar 

  • Mukai, J., Hachiya, T., Shoji-Hoshino, S., Kimura, M. T., Nadano, D., Suvanto, P., Hanaoka, T., Li, Y., Irie, S., Greene, L. A., & Sato, T. A. (2000). NADE, a p75NTR-associated cell death executor, is involved in signal transduction mediated by the common neurotrophin receptor p75NTR. The Journal of Biological Chemistry, 275, 17566–17570.

    CAS  PubMed  Google Scholar 

  • Nakamura, T., Endo, K., & Kinoshita, S. (2007). Identification of human oral keratinocyte stem/progenitor cells by neurotrophin receptor p75 and the role of neurotrophin/p75 signaling. Stem Cells, 25, 628–638.

    CAS  PubMed  Google Scholar 

  • Nykjaer, A., Lee, R., Teng, K. K., Jansen, P., Madsen, P., Nielsen, M. S., Jacobsen, C., Kliemannel, M., Schwarz, E., Willnow, T. E., Hempstead, B. L., & Petersen, C. M. (2004). Sortilin is essential for proNGF-induced neuronal cell death. Nature, 427, 843–848.

    CAS  PubMed  Google Scholar 

  • Okano, H. J., Pfaffm, D. W., & Gibbs, R. B. (1996). Expression of EGFR-, p75NGFR-, and PSTAIRcdc2-like immunoreactivity by proliferating cells in the adult rat hippocampal formation and forebrain. Developmental Neurosciences, 18, 199–209.

    CAS  Google Scholar 

  • Okumura, T., Shimada, Y., Imamura, M., & Yasumoto, S. (2003). Neurotrophin receptor p75NTR characterizes human esophageal keratinocyte stem cells in vitro. Oncogene, 22, 4017–4026.

    CAS  PubMed  Google Scholar 

  • Osuga, H., Osuga, S., Wang, F., Fetni, R., Hogan, M. J., Slack, R. S., Hakim, A. M., Ikeda, J.-E., & Park, D. S. (2000). Cyclin-dependent kinases as a therapeutic target for stroke. Proceedings of the National Academy of Sciences of the United States of America, 97, 10254–10259.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parkhurst, C. N., Zampieri, N., & Chao, M. V. (2010). Nuclear localization of the p75 neurotrophin receptor intracellular domain. The Journal of Biological Chemistry, 285, 5361–5368.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pelegrí, C., Duran-Vilaregut, J., del Valle, J., Crespo-Biel, N., Ferrer, I., Pallàs, M., Camins, A., & Vilaplana, J. (2008). Cell cycle activation in striatal neurons from Huntington’s disease patients and rats treated with 3-nitropropionic acid. International Journal of Developmental Neuroscience, 26, 665–671.

    PubMed  Google Scholar 

  • Pincheira, R., Baerwald, M., Dunbar, J. D., & Donner, D. B. (2009). Sall2 is a novel p75NTR-interacting protein that links NGF signalling to cell cycle progression and neurite outgrowth. The EMBO Journal, 28, 261–273.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Podlesniy, P., Kichev, A., Pedraza, C., Saurat, J., Encinas, M., Perez, B., Ferrer, I., & Espinet, C. (2006). Pro-NGF from Alzheimer’s disease and normal human brain displays distinctive abilities to induce processing and nuclear translocation of intracellular domain of p75NTR and apoptosis. The American Journal of Pathology, 169, 119–131.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Radeke, M. J., Misko, T. P., Hsu, C., Herzenberg, L. A., & Shooter, E. M. (1987). Gene transfer and molecular cloning of the rat nerve growth factor receptor. Nature, 325, 593–597.

    CAS  PubMed  Google Scholar 

  • Ranganathan, S., & Bowser, R. (2003). Alterations in G1 to S phase cell-cycle regulators during amyotrophic lateral sclerosis. The American Journal of Pathology, 162, 823–835.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ranganathan, S., & Bowser, R. (2010). p53 and cell cycle proteins participate in spinal motor neuron cell death in ALS. The Open Pathology Journal, 4, 11–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reynolds, B. A., & Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255, 1707–1710.

    CAS  PubMed  Google Scholar 

  • Rodríguez-Tébar, A., Dechant, G., & Barde, Y. A. (1990). Binding of brain-derived neurotrophic factor to the nerve growth factor receptor. Neuron, 4, 487–492.

    PubMed  Google Scholar 

  • Rodríguez-Tébar, A., Dechant, G., Götz, R., & Barde, Y. A. (1992). Binding of neurotrophin-3 to its neuronal receptors and interactions with nerve growth factor and brain-derived neurotrophic factor. The EMBO Journal, 11, 917–922.

    PubMed Central  PubMed  Google Scholar 

  • Rosenthal, A., Goeddel, D. V., Nguyen, T., Lewis, M., Shih, A., Laramee, G. R., Nikolics, K., & Winslow, J. W. (1990). Primary structure and biological activity of a novel human neurotrophic factor. Neuron, 4, 767–773.

    CAS  PubMed  Google Scholar 

  • Salehi, A. H., Roux, P. P., Kubu, C. J., Zeindler, C., Bhakar, A., Tannis, L. L., Verdi, J. M., & Barker, P. A. (2000). NRAGE, a novel MAGE protein, interacts with the p75 neurotrophin receptor and facilitates nerve growth factor-dependent apoptosis. Neuron, 27, 279–288.

    CAS  PubMed  Google Scholar 

  • Skeldal, S., Matusica, D., Nykjaer, A., & Coulson, E. J. (2011). Proteolytic processing of the p75 neurotrophin receptor: a prerequisite for signalling?: Neuronal life, growth and death signalling are crucially regulated by intra-membrane proteolysis and trafficking of p75(NTR). Bioessays, 33, 614–625.

    CAS  PubMed  Google Scholar 

  • Sotthibundhu, A., Li, Q. X., Thangnipon, W., & Coulson, E. J. (2009). Aβ1-42 stimulates adult SVZ neurogenesis through the p75 neurotrophin receptor. Neurobiology of Aging, 30, 1975–1985.

    CAS  PubMed  Google Scholar 

  • Stone, J. G., Siedlak, S. L., Tabaton, M., Hirano, A., Castellani, R. J., Santocanale, C., Perry, G., Smith, M. A., Zhu, X., & Lee, H. G. (2011). The cell cycle regulator phosphorylated retinoblastoma protein is associated with tau pathology in several tauopathies. Journal of Neuropathology and Experimental Neurology, 70, 578–587.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Susen, K., Heumann, R., & Blöchl, A. (1999). Nerve growth factor stimulates MAPK via the low affinity receptor p75LNTR. FEBS Letters, 463, 231–234.

    CAS  PubMed  Google Scholar 

  • Swartz, F. J., & Bhatnagar, K. P. (1981). Are CNS neurons polyploid? A critical analysis based upon cytophotometric study of the DNA content of cerebellar and olfactory bulbar neurons of the bat. Brain Research, 208, 267–281.

    CAS  PubMed  Google Scholar 

  • Swift, H. (1953). Quantitative aspects of nuclear nucleoproteins. International Review of Cytology, 2, 1–76.

    CAS  Google Scholar 

  • Szaro, B. G., & Tompkins, R. (1987). Effect of tetraploidy on dendritic branching in neurons and glial cells of the frog, Xenopus laevis. The Journal of Comparative Neurology, 258, 304–316.

    CAS  PubMed  Google Scholar 

  • Taniura, H., Taniguchi, N., Hara, M., & Yoshikawa, K. (1998). Necdin, a postmitotic neuron-specific growth suppressor, interacts with viral transforming proteins and cellular transcription factor E2F1. The Journal of Biological Chemistry, 273, 720–728.

    CAS  PubMed  Google Scholar 

  • Tcherpakov, M., Bronfman, F. C., Conticello, S. G., Vaskovsky, A., Levy, Z., Niinobe, M., Yoshikawa, K., Arenas, E., & Fainzilber, M. (2002). The p75 neurotrophin receptor interacts with multiple MAGE proteins. The Journal of Biological Chemistry, 277, 49101–49104.

    CAS  PubMed  Google Scholar 

  • Teng, H. K., Teng, K. K., Lee, R., Wright, S., Tevar, S., Almeida, R. D., Kermani, P., Torkin, R., Chen, Z. Y., Lee, F. S., Kraemer, R. T., Nykjaer, A., & Hempstead, B. L. (2005). ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. The Journal of Neuroscience, 25, 5455–5463.

    CAS  PubMed  Google Scholar 

  • Ullah, Z., Lee, C. Y., Lilly, M. A., & DePamphilis, M. L. (2009). Developmentally programmed endoreduplication in animals. Cell Cycle, 8, 1501–1509.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Urdiales, J. L., Becker, E., Andrieu, M., Thomas, A., Jullien, J., van Grunsven, L. A., Menut, S., Evan, G. I., Martín-Zanca, D., & Rudkin, B. B. (1998). Cell cycle phase-specific surface expression of nerve growth factor receptors TrkA and p75NTR. The Journal of Neuroscience, 18, 6767–6775.

    CAS  PubMed  Google Scholar 

  • Veeriah, S., Morris, L., Solit, D., & Chan, T. A. (2010). The familial Parkinson disease gene PARK2 is a multisite tumor suppressor on chromosome 6q25.2-27 that regulates cyclin E. Cell Cycle, 9, 1451–1452.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Verbeke, S., Meignan, S., Lagadec, C., Germain, E., Hondermarck, H., Adriaenssens, E., & Le Bourhis, X. (2010). Overexpression of p75NTR increases survival of breast cancer cells through p21waf1. Cellular Signalling, 22, 1864–1873.

    CAS  PubMed  Google Scholar 

  • Verdaguer, E., Jiménez, A., Canudas, A. M., Jordà, E. G., Sureda, F. X., Pallàs, M., & Camins, A. (2004). Inhibition of cell cycle pathway by flavopiridol promotes survival of cerebellar granule cells after an excitotoxic treatment. The Journal of Pharmacology and Experimental Therapeutics, 308, 609–616.

    CAS  PubMed  Google Scholar 

  • Vilar, M., Murillo-Carretero, M., Mira, H., Magnusson, K., Besset, V., & Ibáñez, C. F. (2006). Bex1, a novel interactor of the p75 neurotrophin receptor, links neurotrophin signaling to the cell cycle. The EMBO Journal, 25, 1219–1230.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Volosin, M., Trotter, C., Cragnolini, A., Kenchappa, R. S., Light, M., Hempstead, B. L., Carter, B. D., & Friedman, W. J. (2008). Induction of proneurotrophins and activation of p75NTR-mediated apoptosis via neurotrophin receptor-interacting factor in hippocampal neurons after seizures. The Journal of Neuroscience, 28, 9870–9879.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, K. C., Kimm, J. A., Sivasankaran, R., Segal, R., & He, Z. (2002). p75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature, 420, 74–78.

    CAS  PubMed  Google Scholar 

  • Wang, W., Bu, B., Xie, M., Zhang, M., Yu, Z., & Tao, D. (2009). Neural cell cycle dysregulation and central nervous system diseases. Progress in Neurobiology, 89, 1–17.

    CAS  PubMed  Google Scholar 

  • Wen, C. J., Xue, B., Qin, W. X., Yu, M., Zhang, M. Y., Zhao, D. H., Gao, X., Gu, J. R., & Li, C. J. (2004). hNRAGE, a human neurotrophin receptor interacting MAGE homologue, regulates p53 transcriptional activity and inhibits cell proliferation. FEBS Letters, 564, 171–176.

    CAS  PubMed  Google Scholar 

  • Woo, N. H., Teng, H. K., Siao, C. J., Chiaruttini, C., Pang, P. T., Milner, T. A., Hempstead, B. L., & Lu, B. (2005). Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nature Neuroscience, 8, 1069–1077.

    CAS  PubMed  Google Scholar 

  • Woods, J., Snape, M., & Smith, M. A. (2007). The cell cycle hypothesis of Alzheimer’s disease: suggestions for drug development. Biochimica et Biophysica Acta, 1772, 503–508.

    CAS  PubMed  Google Scholar 

  • Yang, Y., Geldmacher, D. S., & Herrup, K. (2001). DNA replication precedes neuronal cell death in Alzheimer’s disease. The Journal of Neuroscience, 21, 2661–2668.

    CAS  PubMed  Google Scholar 

  • Yankner, B. A., & Shooter, E. M. (1982). The biology and mechanism of action of nerve growth factor. Annual Review of Biochemistry, 51, 845–868.

    CAS  PubMed  Google Scholar 

  • Yano, H., Torkin, R., Martin, L. A., Chao, M. V., & Teng, K. K. (2009). Proneurotrophin-3 is a neuronal apoptotic ligand: evidence for retrograde-directed cell killing. The Journal of Neuroscience, 29, 14790–14802.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Young, K. M., Mersonm, T. D., Sotthibundhum, A., Coulson, E. J., & Bartlett, P. F. (2007). p75 neurotrophin receptor expression defines a population of BDNF-responsive neurogenic precursor cells. The Journal of Neuroscience, 27, 5146–5155.

    CAS  PubMed  Google Scholar 

  • Yuanlong, H., Haifeng, J., Xiaoyin, Z., Jialin, S., Jie, L., Li, Y., Huahong, X., Jiugang, S., Yanglin, P., Kaichun, W., Jie, D., & Daiming, F. (2008). The inhibitory effect of p75 neurotrophin receptor on growth of human hepatocellular carcinoma cells. Cancer Letters, 268, 110–119.

    PubMed  Google Scholar 

  • Zhang, W., & Liu, H. T. (2002). MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Research, 12, 9–18.

    CAS  PubMed  Google Scholar 

  • Zhang, W., Zeng, Y. S., Wang, J. M., Ding, Y., Li, Y., & Wu, W. (2009). Neurotrophin-3 improves retinoic acid-induced neural differentiation of skin-derived precursors through a p75NTR-dependent signaling pathway. Neuroscience Research, 64, 170–176.

    CAS  PubMed  Google Scholar 

  • Zhu, W., Cheng, S., Xu, G., Ma, M., Zhou, Z., Liu, D., & Liu, X. (2011). Intranasal nerve growth factor enhances striatal neurogenesis in adult rats with focal cerebral ischemia. Drug Delivery, 18, 338–343.

    CAS  PubMed  Google Scholar 

  • Zuccato, C., Marullo, M., Conforti, P., MacDonald, M. E., Tartari, M., & Cattaneo, E. (2008). Systematic assessment of BDNF and its receptor levels in human cortices affected by Huntington’s disease. Brain Pathology, 18, 225–238.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José María Frade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

López-Sánchez, N., Ovejero-Benito, M.C., Rodríguez-Ruiz, C., Frade, J.M. (2014). NGF/P75 in Cell Cycle and Tetraploidy. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_27

Download citation

Publish with us

Policies and ethics