Skip to main content

Advertisement

Log in

TRPM7 is regulated by halides through its kinase domain

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Transient receptor potential melastatin 7 (TRPM7) is a divalent-selective cation channel fused to an atypical α-kinase. TRPM7 is a key regulator of cell growth and proliferation, processes accompanied by mandatory cell volume changes. Osmolarity-induced cell volume alterations regulate TRPM7 through molecular crowding of solutes that affect channel activity, including magnesium (Mg2+), Mg-nucleotides and a further unidentified factor. Here, we assess whether chloride and related halides can act as negative feedback regulators of TRPM7. We find that chloride and bromide inhibit heterologously expressed TRPM7 in synergy with intracellular Mg2+ ([Mg2+]i) and this is facilitated through the ATP-binding site of the channel’s kinase domain. The synergistic block of TRPM7 by chloride and Mg2+ is not reversed during divalent-free or acidic conditions, indicating a change in protein conformation that leads to channel inactivation. Iodide has the strongest inhibitory effect on TRPM7 at physiological [Mg2+]i. Iodide also inhibits endogenous TRPM7-like currents as assessed in MCF-7 breast cancer cells, where upregulation of SLC5A5 sodium-iodide symporter enhances iodide uptake and inhibits cell proliferation. These results indicate that chloride could be an important factor in modulating TRPM7 during osmotic stress and implicate TRPM7 as a possible molecular mechanism contributing to the anti-proliferative characteristics of intracellular iodide accumulation in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ryazanova LV, Dorovkov MV, Ansari A, Ryazanov AG (2004) Characterization of the protein kinase activity of TRPM7/ChaK1, a protein kinase fused to the transient receptor potential ion channel. J Biol Chem 279:3708–3716

    Article  PubMed  CAS  Google Scholar 

  2. Runnels LW, Yue L, Clapham DE (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291:1043–1047

    Article  PubMed  CAS  Google Scholar 

  3. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM et al (2001) LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411:590–595

    Article  PubMed  CAS  Google Scholar 

  4. Ryazanova LV, Rondon LJ, Zierler S, Hu Z, Galli J, Yamaguchi TP, Mazur A, Fleig A, Ryazanov AG (2010) TRPM7 is essential for Mg(2+) homeostasis in mammals. Nat Commun 1:109

    Article  PubMed  CAS  Google Scholar 

  5. Demeuse P, Penner R, Fleig A (2006) TRPM7 channel is regulated by magnesium nucleotides via its kinase domain. J Gen Physiol 127:421–434

    Article  PubMed  CAS  Google Scholar 

  6. Chokshi R, Matsushita M, Kozak JA (2012) Detailed examination of Mg2+ and pH sensitivity of human TRPM7 channels. Am J Physiol Cell Physiol 302:C1004–C1011

    Article  PubMed  CAS  Google Scholar 

  7. Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, Scharenberg AM (2003) Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114:191–200

    Article  PubMed  CAS  Google Scholar 

  8. Matsushita M, Kozak JA, Shimizu Y, McLachlin DT, Yamaguchi H, Wei FY, Tomizawa K, Matsui H, Chait BT, Cahalan MD et al (2005) Channel function is dissociated from the intrinsic kinase activity and autophosphorylation of TRPM7/ChaK1. J Biol Chem 280:20793–20803

    Article  PubMed  CAS  Google Scholar 

  9. Desai BN, Krapivinsky G, Navarro B, Krapivinsky L, Carter BC, Febvay S, Delling M, Penumaka A, Ramsey IS, Manasian Y et al (2012) Cleavage of TRPM7 releases the kinase domain from the ion channel and regulates its participation in Fas-induced apoptosis. Develop. Cell 22:1149–1162

    Article  CAS  Google Scholar 

  10. Kerschbaum HH, Kozak JA, Cahalan MD (2003) Polyvalent cations as permeant probes of MIC and TRPM7 pores. Biophys J 84:2293–2305

    Article  PubMed  CAS  Google Scholar 

  11. Jiang J, Li M, Yue L (2005) Potentiation of TRPM7 inward currents by protons. J Gen Physiol 126:137–150

    Article  PubMed  CAS  Google Scholar 

  12. Wei WL, Sun HS, Olah ME, Sun X, Czerwinska E, Czerwinski W, Mori Y, Orser BA, Xiong ZG, Jackson MF et al (2007) TRPM7 channels in hippocampal neurons detect levels of extracellular divalent cations. Proc Natl Acad Sci USA 104:16323–16328

    Article  PubMed  Google Scholar 

  13. Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A (2003) TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 121:49–60

    Article  PubMed  CAS  Google Scholar 

  14. Runnels LW, Yue L, Clapham DE (2002) The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat Cell Biol 4:329–336

    PubMed  CAS  Google Scholar 

  15. Takezawa R, Schmitz C, Demeuse P, Scharenberg AM, Penner R, Fleig A (2004) Receptor-mediated regulation of the TRPM7 channel through its endogenous protein kinase domain. Proc Natl Acad Sci USA 101:6009–6014

    Article  PubMed  CAS  Google Scholar 

  16. Schlingmann KP, Weber S, Peters M, Niemann Nejsum L, Vitzthum H, Klingel K, Kratz M, Haddad E, Ristoff E, Dinour D et al (2002) Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat. Gen. 31:166–170

    Article  CAS  Google Scholar 

  17. Walder RY, Landau D, Meyer P, Shalev H, Tsolia M, Borochowitz Z, Boettger MB, Beck GE, Englehardt RK, Carmi R et al (2002) Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Gen 31:171–174

    Article  CAS  Google Scholar 

  18. Abed E, Moreau R (2009) Importance of melastatin-like transient receptor potential 7 and magnesium in the stimulation of osteoblast proliferation and migration by platelet-derived growth factor. Am J Physiol Cell Physiol 297:C360–C368

    Article  PubMed  CAS  Google Scholar 

  19. Jiang J, Li MH, Inoue K, Chu XP, Seeds J, Xiong ZG (2007) Transient receptor potential melastatin 7-like current in human head and neck carcinoma cells: role in cell proliferation. Cancer Res 67:10929–10938

    Article  PubMed  CAS  Google Scholar 

  20. Guilbert A, Gautier M, Dhennin-Duthille I, Haren N, Sevestre H, Ouadid-Ahidouch H (2009) Evidence that TRPM7 is required for breast cancer cell proliferation. Am J Physiol Cell Physiol 297:C493–C502

    Article  PubMed  CAS  Google Scholar 

  21. Sahni J, Tamura R, Sweet IR, Scharenberg AM (2010) TRPM7 regulates quiescent/proliferative metabolic transitions in lymphocytes. Cell Cycle 9:3565–3574

    Article  PubMed  CAS  Google Scholar 

  22. Wykes RC, Lee M, Duffy SM, Yang W, Seward EP, Bradding P (2007) Functional transient receptor potential melastatin 7 channels are critical for human mast cell survival. J Immunol 179:4045–4052

    PubMed  CAS  Google Scholar 

  23. Kim BJ, Park EJ, Lee JH, Jeon JH, Kim SJ, So I (2008) Suppression of transient receptor potential melastatin 7 channel induces cell death in gastric cancer. Cancer Sci 99:2502–2509

    Article  PubMed  CAS  Google Scholar 

  24. Tani D, Monteilh-Zoller MK, Fleig A, Penner R (2007) Cell cycle-dependent regulation of store-operated I(CRAC) and Mg2+-nucleotide-regulated MagNuM (TRPM7) currents. Cell Calcium 41:249–260

    Article  PubMed  CAS  Google Scholar 

  25. Du J, Xie J, Zhang Z, Tsujikawa H, Fusco D, Silverman D, Liang B, Yue L (2010) TRPM7-mediated Ca2+ signals confer fibrogenesis in human atrial fibrillation. Circ Res 106:992–1003

    Article  PubMed  CAS  Google Scholar 

  26. Jin J, Desai BN, Navarro B, Donovan A, Andrews NC, Clapham DE (2008) Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science 322:756–760

    Article  PubMed  CAS  Google Scholar 

  27. Wolf FI, Trapani V (2012) Magnesium and its transporters in cancer: a novel paradigm in tumour development. Clin Sci 123:417–427

    Article  PubMed  CAS  Google Scholar 

  28. Zierler S, Yao G, Zhang Z, Kuo WC, Porzgen P, Penner R, Horgen FD, Fleig A (2011) Waixenicin A inhibits cell proliferation through magnesium-dependent block of transient receptor potential melastatin 7 (TRPM7) channels. J Biol Chem 286:39328–39335

    Article  PubMed  CAS  Google Scholar 

  29. Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115:863–877

    Article  PubMed  CAS  Google Scholar 

  30. Patrick L (2008) Iodine: deficiency and therapeutic considerations. Alt Med Rev 13:116–127

    Google Scholar 

  31. Arroyo-Helguera O, Anguiano B, Delgado G, Aceves C (2006) Uptake and antiproliferative effect of molecular iodine in the MCF-7 breast cancer cell line. Endo Rel Cancer 13:1147–1158

    Article  CAS  Google Scholar 

  32. Venturi S (2001) Is there a role for iodine in breast diseases? Breast 10:379–382

    Article  PubMed  CAS  Google Scholar 

  33. Spitzweg C, Morris JC (2002) The sodium iodide symporter: its pathophysiological and therapeutic implications. Clin Endo 57:559–574

    Article  CAS  Google Scholar 

  34. Spitzweg C, Morris JC (2002) Sodium iodide symporter (NIS) and thyroid. Hormones 1:22–34

    PubMed  Google Scholar 

  35. Eskin BA (1976) Dietary iodine and cancer risk. Lancet 2:807–808

    Article  PubMed  CAS  Google Scholar 

  36. Tazebay UH, Wapnir IL, Levy O, Dohan O, Zuckier LS, Zhao QH, Deng HF, Amenta PS, Fineberg S, Pestell RG et al (2000) The mammary gland iodide transporter is expressed during lactation and in breast cancer. Nat Med 6:871–878

    Article  PubMed  CAS  Google Scholar 

  37. Smerdely P, Pitsiavas V, Boyages SC (1993) Evidence that the inhibitory effects of iodide on thyroid cell proliferation are due to arrest of the cell cycle at G0G1 and G2M phases. Endocrinol 133:2881–2888

    Article  CAS  Google Scholar 

  38. Vitale M, Di Matola T, D’Ascoli F, Salzano S, Bogazzi F, Fenzi G, Martino E, Rossi G (2000) Iodide excess induces apoptosis in thyroid cells through a p53-independent mechanism involving oxidative stress. Endocrinol 141:598–605

    Article  CAS  Google Scholar 

  39. Zhang L, Sharma S, Zhu LX, Kogai T, Hershman JM, Brent GA, Dubinett SM, Huang M (2003) Nonradioactive iodide effectively induces apoptosis in genetically modified lung cancer cells. Cancer Res 63:5065–5072

    PubMed  CAS  Google Scholar 

  40. Stoddard FR, Brooks AD, Eskin BA, Johannes GJ (2008) Iodine alters gene expression in the MCF7 breast cancer cell line: evidence for an anti-estrogen effect of iodine. Int J Med Sci 5:189–196

    Article  PubMed  CAS  Google Scholar 

  41. Lang F, Busch GL, Volkl H (1998) The diversity of volume regulatory mechanisms. Int J Exp Cell Physiol Biochem Pharm 8:1–45

    Article  CAS  Google Scholar 

  42. Planells-Cases R, Jentsch TJ (2009) Chloride channelopathies. Biochim Biophys Acta 1792:173–189

    Article  PubMed  CAS  Google Scholar 

  43. Hoffmann EK, Pedersen SF (2011) Cell volume homeostatic mechanisms: effectors and signalling pathways. Acta Physiol 202:465–485

    Article  CAS  Google Scholar 

  44. Bessac BF, Fleig A (2007) TRPM7 channel is sensitive to osmotic gradients in human kidney cells. J Physiol (Lond) 582:1073–1086

    Article  CAS  Google Scholar 

  45. Schomberg SL, Bauer J, Kintner DB, Su G, Flemmer A, Forbush B, Sun D (2003) Cross talk between the GABA(A) receptor and the Na-K-Cl cotransporter is mediated by intracellular Cl. J Neurophysiol 89:159–167

    Article  PubMed  CAS  Google Scholar 

  46. Lytle C, McManus T (2002) Coordinate modulation of Na-K-2Cl cotransport and K-Cl cotransport by cell volume and chloride. Am J Physiol Cell Physiol 283:C1422–C1431

    Article  PubMed  CAS  Google Scholar 

  47. Voets T, Nilius B, Hoefs S, Van der Kemp AW, Droogmans G, Bindels RJ, Hoenderop JG (2004) TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem 279:19–25

    Article  PubMed  CAS  Google Scholar 

  48. Thebault S, Cao G, Venselaar H, Xi Q, Bindels RJ, Hoenderop JG (2008) Role of the alpha-kinase domain in transient receptor potential melastatin 6 channel and regulation by intracellular ATP. J Biol Chem 283:19999–20007

    Article  PubMed  CAS  Google Scholar 

  49. Willhauck MJ, Sharif-Samani B, Senekowitsch-Schmidtke R, Wunderlich N, Goke B, Morris JC, Spitzweg C (2008) Functional sodium iodide symporter expression in breast cancer xenografts in vivo after systemic treatment with retinoic acid and dexamethasone. Breast Cancer Res Treat 109:263–272

    Article  PubMed  CAS  Google Scholar 

  50. Zhou J-G, Ren J-L, Qiu Q-Y, He H, Guan Y-Y (2005) Regulation of intracellular Cl- concentration through volume-regulated ClC-3 chloride channels in A10 vascular smooth muscle cells. J Biol Chem 280:7301–7308

    Article  PubMed  CAS  Google Scholar 

  51. Garcia MA, Meizel S (1999) Determination of the steady-state intracellular chloride concentration in capacitated human spermatozoa. J Androl 20:88–93

    PubMed  CAS  Google Scholar 

  52. Akabas MH (2001) Chloride channels. Encyclopedia of Life Sciences 1–7

  53. Kakazu Y, Akaike N, Komiyama S, Nabekura J (1999) Regulation of intracellular chloride by cotransporters in developing lateral superior olive neurons. J Neurosci 19:2843–2851

    PubMed  CAS  Google Scholar 

  54. Arosio D, Ricci F, Marchetti L, Gualdani R, Albertazzi L, Beltram F (2010) Simultaneous intracellular chloride and pH measurements using a GFP-based sensor. Nat Methods 7:516–518

    Article  PubMed  CAS  Google Scholar 

  55. Collier DM, Snyder PM (2009) Extracellular chloride regulates the epithelial sodium channel. J Biol Chem 284:29320–29325

    Article  PubMed  CAS  Google Scholar 

  56. Kusama N, Harding AM, Benson CJ (2010) Extracellular chloride modulates the desensitization kinetics of acid-sensing ion channel 1a (ASIC1a). J Biol Chem 285:17425–17431

    Article  PubMed  CAS  Google Scholar 

  57. Kozak JA, Kerschbaum HH, Cahalan MD (2002) Distinct properties of CRAC and MIC channels in RBL cells. J Gen Physiol 120:221–235

    PubMed  Google Scholar 

  58. Kozak JA, Matsushita M, Nairn AC, Cahalan MD (2005) Charge screening by internal pH and polyvalent cations as a mechanism for activation, inhibition, and rundown of TRPM7/MIC channels. J Gen Physiol 126:499–514

    Article  PubMed  CAS  Google Scholar 

  59. Lee BC, Hong SE, Lim HH, Kim do H, Park CS (2011) Alteration of the transcriptional profile of human embryonic kidney cells by transient overexpression of mouse TRPM7 channels. Int J Exp Cell Physiol 27:313–326

    CAS  Google Scholar 

  60. Chokshi R, Matsushita M, Kozak JA (2012) Sensitivity of TRPM7 channels to Mg2+ characterized in cell-free patches of Jurkat T lymphocytes. Am J Physiol Cell Physiol 302:C1642–C1651

    Article  PubMed  CAS  Google Scholar 

  61. Bachhuber T, Konig J, Voelcker T, Murle B, Schreiber R, Kunzelmann K (2005) Cl- interference with the epithelial Na+ channel ENaC. J Biol Chem 280:31587–31594

    Article  PubMed  CAS  Google Scholar 

  62. Schreiber R, Boucherot A, Murle B, Sun J, Kunzelmann K (2004) Control of epithelial ion transport by Cl- and PDZ proteins. J Memb Biol 199:85–98

    Article  CAS  Google Scholar 

  63. Baquero Gonzales AF (2009) The regulation of epithelial sodium channels in mammalian taste receptor cells. All Grad Thes Diss Paper 418:1–201

    Google Scholar 

  64. Doyon N, Prescott SA, Castonguay A, Godin AG, Kroger H, De Koninck Y (2011) Efficacy of synaptic inhibition depends on multiple, dynamically interacting mechanisms implicated in chloride homeostasis. PLoS Comput Biol 7:e1002149

    Article  PubMed  CAS  Google Scholar 

  65. Jedlicka P, Deller T, Gutkin BS, Backus KH (2011) Activity-dependent intracellular chloride accumulation and diffusion controls GABA(A) receptor-mediated synaptic transmission. Hippocampus 21:885–898

    PubMed  CAS  Google Scholar 

  66. Choi DW (1996) Ischemia-induced neuronal apoptosis. Curr Opin Neurobiol 6:667–672

    Article  PubMed  CAS  Google Scholar 

  67. Pacheco-Alvarez D, Gamba G (2011) WNK3 is a putative chloride-sensing kinase. Int J Exp Cell Physiol Biochem Pharm 28:1123–1134

    Article  CAS  Google Scholar 

  68. Niisato N, Eaton DC, Marunaka Y (2004) Involvement of cytosolic Cl- in osmoregulation of alpha-ENaC gene expression. Am J Physiol Renal Physiol 287:F932–F939

    Article  PubMed  CAS  Google Scholar 

  69. Ohsawa R, Miyazaki H, Niisato N, Shiozaki A, Iwasaki Y, Otsuji E, Marunaka Y (2010) Intracellular chloride regulates cell proliferation through the activation of stress-activated protein kinases in MKN28 human gastric cancer cells. J Cell Physiol 223:764–770

    PubMed  CAS  Google Scholar 

  70. Heimlich G, Cidlowski JA (2006) Selective role of intracellular chloride in the regulation of the intrinsic but not extrinsic pathway of apoptosis in Jurkat T-cells. J Biol Chem 281:2232–2241

    Article  PubMed  CAS  Google Scholar 

  71. Poulsen KA, Andersen EC, Hansen CF, Klausen TK, Hougaard C, Lambert IH, Hoffmann EK (2010) Deregulation of apoptotic volume decrease and ionic movements in multidrug-resistant tumor cells: role of chloride channels. Am J Physiol Cell Physiol 298:C14–C25

    Article  PubMed  CAS  Google Scholar 

  72. Paravicini TM, Chubanov V, Gudermann T (2012) TRPM7: a unique channel involved in magnesium homeostasis. Int J Biochem Cell Biol 44:1381–1384

    Article  PubMed  CAS  Google Scholar 

  73. Liu XH, Chen GG, Vlantis AC, Van Hasselt CA (2009) Iodine mediated mechanisms and thyroid carcinoma. Crit Rev Clin Lab Sci 46:302–318

    Article  PubMed  CAS  Google Scholar 

  74. Rhoden KJ, Cianchetta S, Duchi S, Romeo G (2008) Fluorescence quantitation of thyrocyte iodide accumulation with the yellow fluorescent protein variant YFP-H148Q/I152L. Anal Biochem 373:239–246

    Article  PubMed  CAS  Google Scholar 

  75. Yoshida A, Taniguchi S, Hisatome I, Royaux IE, Green ED, Kohn LD, Suzuki K (2002) Pendrin is an iodide-specific apical porter responsible for iodide efflux from thyroid cells. J Clin Endocrinol Metab 87:3356–3361

    Article  PubMed  CAS  Google Scholar 

  76. Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R et al (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595–599

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Expert technical expertise provided by Stephanie Johne and Christopher Maggio. Thank you to Dr. René J.M. Bindels and Dr. Alexey Ryazanov for kindly providing pCINeo-IRES-GFP-hTRPM6 construct. This work was supported by the National Institute for General Medical Science at the National Institutes of Health [P01GM078195 to A.F.].

Conflict of interests

All authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Fleig.

Additional information

H. Yu and Z. Zhang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, H., Zhang, Z., Lis, A. et al. TRPM7 is regulated by halides through its kinase domain. Cell. Mol. Life Sci. 70, 2757–2771 (2013). https://doi.org/10.1007/s00018-013-1284-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1284-6

Keywords

Navigation