Skip to main content

Advertisement

Log in

TRPM6 kinase activity regulates TRPM7 trafficking and inhibits cellular growth under hypomagnesic conditions

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The channel kinases TRPM6 and TRPM7 are both members of the melastatin-related transient receptor potential (TRPM) subfamily of ion channels and the only known fusions of an ion channel pore with a kinase domain. TRPM6 and TRPM7 form functional, tetrameric channel complexes at the plasma membrane by heteromerization. TRPM6 was previously shown to cross-phosphorylate TRPM7 on threonine residues, but not vice versa. Genetic studies demonstrated that TRPM6 and TRPM7 fulfill non-redundant functions and that each channel contributes uniquely to the regulation of Mg2+ homeostasis. Although there are indications that TRPM6 and TRPM7 can influence each other’s cellular distribution and activity, little is known about the functional relationship between these two channel-kinases. In the present study, we examined how TRPM6 kinase activity influences TRPM7 serine phosphorylation, intracellular trafficking, and cell surface expression of TRPM7, as well as Mg2+-dependent cellular growth. We found TRPM7 serine phosphorylation via the TRPM6 kinase, but no TRPM6 serine phosphorylation via the TRPM7 kinase. Intracellular trafficking of TRPM7 was altered in HEK-293 epithelial kidney cells and DT40 B cells in the presence of TRPM6 with intact kinase activity, independently of the availability of extracellular Mg2+, but TRPM6/7 surface labeling experiments indicate comparable levels of the TRPM6/7 channels at the plasma membrane. Furthermore, using a complementation approach in TRPM7-deficient DT40 B-cells, we demonstrated that wild-type TRPM6 inhibited cell growth under hypomagnesic cell culture conditions in cells co-expressing TRPM6 and TRPM7; however, co-expression of a TRPM6 kinase dead mutant had no effect—a similar phenotype was also observed in TRPM6/7 co-expressing HEK-293 cells. Our results provide first clues about how heteromer formation between TRPM6 and TRPM7 influences the biological activity of these ion channels. We show that TRPM6 regulates TRPM7 intracellular trafficking and TRPM7-dependent cell growth. All these effects are dependent upon the presence of an active TRPM6 kinase domain. Dysregulated Mg2+-homeostasis causes or exacerbates many pathologies. As TRPM6 and TRPM7 are expressed simultaneously in numerous cell types, understanding how their relationship impacts regulation of Mg2+-uptake is thus important knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TRPM6 and TRPM7:

Transient receptor potential cation channel, subfamily melastatin, member 6 and 7

HSH:

Hypomagnesemia with secondary hypocalcemia

XMEN:

X-linked immunodeficiency with magnesium defect, chronic Epstein–Barr virus infections and neoplasia

References

  1. Voets T et al (2004) TRPM6 forms the Mg2+influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem 279(1):19–25

    Article  CAS  PubMed  Google Scholar 

  2. Jiang J, Li M, Yue L (2005) Potentiation of TRPM7 inward currents by protons. J Gen Physiol 126(2):137–150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Li M, Jiang J, Yue L (2006) Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol 127(5):525–537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Schlingmann KP et al (2002) Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet 31(2):166–170

    Article  CAS  PubMed  Google Scholar 

  5. Walder RY et al (2002) Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet 31(2):171–174

    Article  CAS  PubMed  Google Scholar 

  6. Brandao K et al (2013) The role of Mg2+ in immune cells. Immunol Res 55(1–3):261–269

    Article  CAS  PubMed  Google Scholar 

  7. Jin J et al (2008) Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science 322(5902):756–760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Ryazanova LV et al (2010) TRPM7 is essential for Mg(2+) homeostasis in mammals. Nat Commun 1:109

    Article  PubMed Central  PubMed  Google Scholar 

  9. Woudenberg-Vrenken TE et al (2011) Transient receptor potential melastatin 6 knockout mice are lethal whereas heterozygous deletion results in mild hypomagnesemia. Nephron Physiol 117(2):p11–p19

    Article  CAS  PubMed  Google Scholar 

  10. Schmitz C et al (2003) Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114(2):191–200

    Article  CAS  PubMed  Google Scholar 

  11. Schmitz C et al (2005) The channel kinases TRPM6 and TRPM7 are functionally nonredundant. J Biol Chem 280(45):37763–37771

    Article  CAS  PubMed  Google Scholar 

  12. Ryazanova LV et al (2004) Characterization of the protein kinase activity of TRPM7/ChaK1, a protein kinase fused to the transient receptor potential ion channel. J Biol Chem 279(5):3708–3716

    Article  CAS  PubMed  Google Scholar 

  13. Yamaguchi H et al (2001) Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Mol Cell 7(5):1047–1057

    Article  CAS  PubMed  Google Scholar 

  14. Runnels LW (2011) TRPM6 and TRPM7: a Mul-TRP-PLIK-cation of channel functions. Curr Pharm Biotechnol 12(1):42–53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Matsushita M et al (2005) Channel function is dissociated from the intrinsic kinase activity and autophosphorylation of TRPM7/ChaK1. J Biol Chem 280(21):20793–20803

    Article  CAS  PubMed  Google Scholar 

  16. Crawley SW, Cote GP (2009) Identification of dimer interactions required for the catalytic activity of the TRPM7 alpha-kinase domain. Biochem J 420(1):115–122

    Article  CAS  PubMed  Google Scholar 

  17. Dorovkov MV, Ryazanov AG (2004) Phosphorylation of annexin I by TRPM7 channel-kinase. J Biol Chem 279(49):50643–50646

    Article  CAS  PubMed  Google Scholar 

  18. Clark K et al (2006) TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J 25(2):290–301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Perraud AL et al (2011) The channel-kinase TRPM7 regulates phosphorylation of the translational factor eEF2 via eEF2-k. Cell Signal 23(3):586–593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Deason-Towne F, Perraud AL, Schmitz C (2012) Identification of Ser/Thr phosphorylation sites in the C2-domain of phospholipase C gamma2 (PLCgamma2) using TRPM7-kinase. Cell Signal 24(11):2070–2075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Sahni J, Scharenberg AM (2008) TRPM7 ion channels are required for sustained phosphoinositide 3-kinase signaling in lymphocytes. Cell Metab 8(1):84–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Wei C et al (2009) Calcium flickers steer cell migration. Nature 457(7231):901–905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Asrar S, Aarts M (2013) TRPM7, the cytoskeleton and neuronal death. Channels (Austin) 7(1):6–16

    Article  CAS  Google Scholar 

  24. Middelbeek J et al (2010) The alpha-kinase family: an exceptional branch on the protein kinase tree. Cell Mol Life Sci 67(6):875–890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Wolf FI, Trapani V (2012) Magnesium and its transporters in cancer: a novel paradigm in tumour development. Clin Sci (Lond) 123(7):417–427

    Article  CAS  Google Scholar 

  26. Middelbeek J et al (2012) TRPM7 is required for breast tumor cell metastasis. Cancer Res 72(16):4250–4261

    Article  CAS  PubMed  Google Scholar 

  27. Walder RY et al (2009) Mice defective in Trpm6 show embryonic mortality and neural tube defects. Hum Mol Genet 18(22):4367–4375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Feske S, Skolnik EY, Prakriya M (2012) Ion channels and transporters in lymphocyte function and immunity. Nat Rev Immunol 12(7):532–547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Desai BN et al (2012) Cleavage of TRPM7 releases the kinase domain from the ion channel and regulates its participation in Fas-induced apoptosis. Dev Cell 22(6):1149–1162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Deason-Towne F, Perraud AL, Schmitz C (2011) The Mg(2+) transporter MagT1 partially rescues cell growth and Mg(2+) uptake in cells lacking the channel-kinase TRPM7. FEBS Lett 585(14):2275–2278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Sahni J, Nelson B, Scharenberg AM (2007) SLC41A2 encodes a plasma-membrane Mg2+ transporter. Biochem J 401(2):505–513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  Google Scholar 

  33. Clark K et al (2008) Massive autophosphorylation of the Ser/Thr-rich domain controls protein kinase activity of TRPM6 and TRPM7. PLoS One 3(3):e1876

    Article  PubMed Central  PubMed  Google Scholar 

  34. Chubanov V et al (2004) Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc Natl Acad Sci USA 101(9):2894–2899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Thebault S et al (2009) EGF increases TRPM6 activity and surface expression. J Am Soc Nephrol 20(1):78–85

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Quamme GA (2010) Molecular identification of ancient and modern mammalian magnesium transporters. Am J Physiol Cell Physiol 298(3):C407–C429

    Article  CAS  PubMed  Google Scholar 

  37. Li FY et al (2011) Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature 475(7357):471–476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Chaigne-Delalande B et al (2013) Mg2+ regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D. Science 341(6142):186–191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Hermosura MC et al (2005) A TRPM7 variant shows altered sensitivity to magnesium that may contribute to the pathogenesis of two Guamanian neurodegenerative disorders. Proc Natl Acad Sci USA 102(32):11510–11515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Zhang Z et al (2014) The TRPM6 kinase domain determines the Mg.ATP sensitivity of TRPM7/M6 heteromeric ion channels. J Biol Chem 289(8):5217–5227

    Article  CAS  PubMed  Google Scholar 

  41. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Strubing C et al (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29(3):645–655

    Article  CAS  PubMed  Google Scholar 

  43. Hofmann T et al (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci USA 99(11):7461–7466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Mace KE et al (2010) TRUSS, TNF-R1, and TRPC ion channels synergistically reverse endoplasmic reticulum Ca2+ storage reduction in response to m1 muscarinic acetylcholine receptor signaling. J Cell Physiol 225(2):444–453

    Article  CAS  PubMed  Google Scholar 

  45. Montell C (2005) The TRP superfamily of cation channels. Sci STKE 2005(272):re3

    PubMed  Google Scholar 

  46. Venkatachalam K, Hofmann T, Montell C (2006) Lysosomal localization of TRPML3 depends on TRPML2 and the mucolipidosis-associated protein TRPML1. J Biol Chem 281(25):17517–17527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Dai Q et al (2007) The relation of magnesium and calcium intakes and a genetic polymorphism in the magnesium transporter to colorectal neoplasia risk. Am J Clin Nutr 86(3):743–751

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Beech DJ (2012) Integration of transient receptor potential canonical channels with lipids. Acta Physiol (Oxf) 204(2):227–237

    Article  CAS  Google Scholar 

  49. Toro CA, Arias LA, Brauchi S (2011) Sub-cellular distribution and translocation of TRP channels. Curr Pharm Biotechnol 12(1):12–23

    Article  CAS  PubMed  Google Scholar 

  50. Cayouette S, Boulay G (2007) Intracellular trafficking of TRP channels. Cell Calcium 42(2):225–232

    Article  CAS  PubMed  Google Scholar 

  51. Nadler MJ et al (2001) LTRPC7 is a Mg. ATP-regulated divalent cation channel required for cell viability. Nature 411(6837):590–595

    Article  CAS  PubMed  Google Scholar 

  52. Su LT et al (2006) TRPM7 regulates cell adhesion by controlling the calcium-dependent protease calpain. J Biol Chem 281(16):11260–11270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Su LT et al (2010) TRPM7 activates m-calpain by stress-dependent stimulation of p38 MAPK and c-Jun N-terminal kinase. J Mol Biol 396(4):858–869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This paper was supported by NIH training Grant 5 T32 A1007405 (NIAID) to K.B., by NIH Grant 5R01GM068801 (NIGMS) to A.L.P. and by NIH Grants 5R21AI088421 (NIAID) and 5R01GM090123 (NIGMS & Office of Dietary Supplements) to C.S. We thank Dr. Fabienne Gally for carefully reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anne-Laure Perraud or Carsten Schmitz.

Additional information

A.-L. Perraud and C. Schmitz contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2014_1647_MOESM1_ESM.tif

Figure S1: Complementation approach of TRPM7 deficient DT40 cells with human TRPM7 WT co-expressed with human TRPM6 WT or human TRPM6 kinase dead (TRPM6 KR) mutants. A) Schematic representation of the DT40 complementation system. TRPM7 deficient chicken DT40 B cell complemented with human TRPM7 WT (cWT M7) alone, co-expressed with human TRPM6 WT (cWT +M6 WT) or with a human TRPM6 kinase dead mutant (cWT M7 + M6 K1804R). TRPM6 is Flag- and TRPM7 is HA-tagged. B) FLAG-hTRPM6 K1804R (kinase dead) has been cloned and stably transfected into TRPM7 deficient DT40 cells with stable expression of the Tet repressor and complemented with human TRPM7 WT channels. Cell clones were selected for stable, doxycycline (Dox)-inducible protein expression (+, induced; -, non-induced). Flag-tagged TRPM6 was immunoprecipitated (IP) and subsequently analyzed by immunoblotting using an anti-FLAG antibody. C) Analysis of TRPM6 protein expression levels under high and low Mg2+ concentrations. Co-expression of human TRPM7 WT and TRPM6 WT or a TRPM6 kinase dead mutant (KR) in TRPM7 deficient DT40 cells was induced by adding doxycycline to chemically defined media. 24 h after induced protein overexpression cells have been cultured in 10 or 0 mM Mg2+ for another 24 h. Equal numbers of cells of the hTRPM6/hTRPM7 coexpressing DT40 TRPM7−/− cell line were analyzed by immunoprecipitation (IP), followed by Western immunoblotting (WB) with anti-FLAG or anti-HA antibodies. TRPM7 DT40 deficient cells have been used as negative control (M7 KO). These data are representative of at least two separate experiments. (TIFF 579 kb)

18_2014_1647_MOESM2_ESM.tif

Figure S2: Analysis of TRPM6 channel-kinase regulation of TRPM7 subcellular trafficking in varying Mg2+ growth conditions. Charts show mean % of cells ± SEM. A/C) TRPM7 subcellular distribution was measured using a 1 pixel histogram across each cell. Cells displaying high levels of peripheral TRPM7 trafficking were identified by steep increases in fluorescent intensity near the membrane while cells expressing low levels of peripheral trafficking contained low levels of immunoreactivity near the membrane and shallow increases in fluorescent intensity. 15-30 cells were measured per cell type and growth condition. A/B) TRPM7 WT (0 mM n = 3, 1 mM: n = 4) TRPM7 WT + M6 WT (0 mM n = 5, 1 mM: n = 4) TRPM7 WT + M6 KR (0 mM n = 5, 1 mM: n = 4). A) The percentage of TRPM7 WT cells containing defined peaks of TRPM7 immunoreactivity increased in 0 mM growth conditions compared to the 1 mM growth conditions. The presence of TRPM6 inhibited significant change in TRPM7 transport towards the membrane in hypomagnesic conditions. B) TRPM7 clusters were defined as saturating regions of TRPM7 greater than 0.5 mm in length. The presence of a functional TRPM6 kinase domain corresponded to a significant increase in TRPM7 clusters in both Mg2+ growth conditions. C/D) cWT M7 (0 mM n = 3, 1 mM: n = 5) cWT + M6 WT (0 mM n = 3, 1 mM: n = 5) cWT M7 + M6 KR (0 mM n = 3, 1 mM: n = 4). C) The percentage of cells producing histograms showing sharp TRPM7 peaks near the periphery of the cell instead of diffuse TRPM7 immunoreactivity across the cell increased significantly in cWT M7 grown in 0 mM Mg2+ compared to 1 mM Mg2+. No significant change was measured in cWT M7 + M6 WT or cWT M7 + M6 KR cells in 0 or 1 mM Mg2+ growth conditions, but each cell type displayed a significantly lower percentage of cells containing TRPM7 peripheral trafficking as compared to cWT M7 cells in 0 mM Mg2+. D) TRPM7 expression, measured as the percentage of cells displaying TRPM7 immunoreactivity 3-SD above the mean background levels, increased only in cWT M7 + M6 WT cells grown in a hypomagnesic environment. (TIFF 123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandao, K., Deason-Towne, F., Zhao, X. et al. TRPM6 kinase activity regulates TRPM7 trafficking and inhibits cellular growth under hypomagnesic conditions. Cell. Mol. Life Sci. 71, 4853–4867 (2014). https://doi.org/10.1007/s00018-014-1647-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1647-7

Keywords

Navigation