Skip to main content
Log in

On the L p discrepancy of two-dimensional folded Hammersley point sets

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

We give an explicit construction of two-dimensional point sets whose L p discrepancy is of best possible order for all \({1 \le p \le \infty}\). It is provided by folding Hammersley point sets in base b by means of the b-adic baker’s transformation which has been introduced by Hickernell (Monte Carlo and quasi-Monte Carlo methods. Springer, Berlin, 274–289, 2002) for b =  2 and Goda, Suzuki, and Yoshiki (The b-adic baker’s transformation for quasi-Monte Carlo integration using digital nets. arXiv:1312.5850 [math:NA], 2013) for arbitrary \({b \in \mathbb{N}}\), \({b \ge 2}\). We prove that both the minimum Niederreiter–Rosenbloom–Tsfasman weight and the minimum Dick weight of folded Hammersley point sets are large enough to achieve the best possible order of L p discrepancy for all \({1 \le p \le \infty}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bilyk D.: On Roth’s orthogonal function method in discrepancy theory. Uniform Distrib. Theory 6, 143–184 (2011)

    MATH  MathSciNet  Google Scholar 

  2. Chen W. W. L.: On irregularities of distribution. Mathematika 27, 153–170 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  3. W. W. L. Chen and M. M. Skriganov, Explicit constructions in the classical mean squares problem in irregularities of point distribution, J. Reine Angew. Math. 545 (2002), 67–95.

  4. J. Dick, Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order, SIAM J. Numer. Anal. 46 (2008), 1519–1553.

  5. J. Dick, Discrepancy bounds for infinite-dimensional order two digital sequences over \({\mathbb{F}_2}\), J. Number Theory 136 (2014), 204–232.

  6. J. Dick and F. Pillichshammer, Digital nets and sequences. Discrepancy theory and quasi-Monte Carlo integration, Cambridge University Press, Cambridge, 2010.

  7. Dick J., Pillichshammer F.: Optimal \({\mathcal{L}_2}\) discrepancy bounds for higher order digital sequences over the finite field \({\mathbb{F}_2}\). Acta Arith, 162, 65–99 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. H. Faure and F. Pillichshammer, L p discrepancy of generalized two-dimensional Hammersley point sets, Monatsh. Math. 158 (2009), 31–61.

  9. T. Goda, K. Suzuki and T. Yoshiki, The b-adic baker’s transformation for quasi-Monte Carlo integration using digital nets, arXiv:1312.5850 [math:NA], Preprint 2013.

  10. G. Halász, On Roth’s method in the theory of irregularities of point distributions, in: Recent Progress in Analytic Number Theory, Academic Press, London (1981), 79–94.

  11. J. H. Halton and S. K. Zaremba, The extreme and L 2 discrepancies of some plane sets. Monatsh, Math. 73 (1969), 316–328.

  12. F. J. Hickernell, Obtaining \({O(N^{-2+\epsilon})}\) convergence for lattice quadrature rules. in: K.-T. Fang, F. J. Hickernell, H. Niederreiter (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, Springer, Berlin (2002), 274–289.

  13. G. Larcher and F. Pillichshammer, Walsh series analysis of the L 2-discrepancy of symmetrisized point sets, Monatsh. Math. 132 (2001), 1–18.

  14. L. Markhasin, L 2- and \({S_{p,q}^rB}\)-discrepancy of (order 2) digital nets, arXiv:1402.4424 [math:NA], Preprint 2014.

  15. Niederreiter H.: Low-discrepancy point sets. Monatsh. Math. 102, 155–167 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. Niederreiter H.: Point sets and sequences with small discrepancy. Monatsh. Math. 104, 273–337 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. F. Pillichshammer, On the L p discrepancy of the Hammersley point set, Monatsh. Math. 136 (2002), 67–79.

  18. M. Yu. Rosenbloom and M. A. Tsfasman, Codes for the m-metric. Probl, Inf. Transm. 33 (1997), 55–63.

  19. K. F. Roth, On irregularities of distribution. Mathematika 1 (1954), 73–79.

  20. K. F. Roth, On irregularities of distribution, IV. Acta Arith. 37 (1980), 67–75.

  21. W. M. Schmidt, Irregularities of distribution, VI. Acta Arith. 21 (1972), 45–50.

  22. W. M. Schmidt, Irregularities of distribution, X. in: Number Theory and Algebra, Academic Press, New York (1977), 311–329.

  23. Skriganov M. M.: Harmonic analysis on totally disconnected groups and irregularities of point distributions. J. Reine Angew. Math. 600, 25–49 (2006)

    MATH  MathSciNet  Google Scholar 

  24. White B. E.: Mean-square discrepancy of the Hammersley and Zaremba sequences for arbitrary radix. Monatsh. Math. 80, 219–229 (1975)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Goda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goda, T. On the L p discrepancy of two-dimensional folded Hammersley point sets. Arch. Math. 103, 389–398 (2014). https://doi.org/10.1007/s00013-014-0698-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-014-0698-1

Mathematics Subject Classification

Keywords

Navigation