Skip to main content

Advertisement

Log in

Fructose malabsorption in ChREBP-deficient mice disrupts the small intestine immune microenvironment and leads to diarrhea-dominant bowel habit changes

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

A Correction to this article was published on 19 May 2023

This article has been updated

Abstract

Background

The mechanism by which incompletely absorbed fructose causes gastrointestinal symptoms is not fully understood. In this study, we investigated the immunological mechanisms of bowel habit changes associated with fructose malabsorption by examining Chrebp-knockout mice exhibiting defective fructose absorption.

Methods

Mice were fed a high-fructose diet (HFrD), and stool parameters were monitored. The gene expression in the small intestine was analyzed by RNA sequencing. Intestinal immune responses were assessed. The microbiota composition was determined by 16S rRNA profiling. Antibiotics were used to assess the relevance of microbes for HFrD-induced bowel habit changes.

Results

Chrebp-knockout (KO) mice fed HFrD showed diarrhea. Small-intestine samples from HFrD-fed Chrebp-KO mice revealed differentially expressed genes involved in the immune pathways, including IgA production. The number of IgA-producing cells in the small intestine decreased in HFrD-fed Chrebp-KO mice. These mice showed signs of increased intestinal permeability. Chrebp-KO mice fed a control diet showed intestinal bacterial imbalance, which the HFrD exaggerated. Bacterial reduction improved diarrhea-associated stool parameters and restored the decreased IgA synthesis induced in HFrD-fed Chrebp-KO mice.

Conclusions

The collective data indicate that gut microbiome imbalance and disrupting homeostatic intestinal immune responses account for the development of gastrointestinal symptoms induced by fructose malabsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated or analyzed during the current study are available from the corresponding author on reasonable request.

Change history

Abbreviations

APRIL:

A proliferation-inducing ligand

BAFF:

B cell-activating factor of the tumor necrosis factor family

ChREBP:

Carbohydrate-responsive element-binding protein

DEGs:

Differentially expressed genes

FPKM:

Fragments per kilobase of exon per million fragments mapped

GI:

Gastrointestinal

GSEA:

Gene set enrichment analysis

HFrD:

High-fructose diet

KEGG:

Kyoto encyclopedia of genes and genomes

KO:

Knockout

LP:

Lamina propria

LTs:

Lymphotoxins

SCFA:

Short-chain fatty acids

TGF-β:

Transforming growth factor β

WT:

Wild-type

References

  1. Shepherd SJ, Gibson PR. Fructose malabsorption and symptoms of irritable bowel syndrome: guidelines for effective dietary management. J Am Diet Assoc. 2006;106:1631–9.

    Article  PubMed  Google Scholar 

  2. Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr. 2004;79:537–43.

    Article  CAS  PubMed  Google Scholar 

  3. White JS. Straight talk about high-fructose corn syrup: what it is and what it ain’t. Am J Clin Nutr. 2008;88:1716S-S1721.

    Article  CAS  PubMed  Google Scholar 

  4. Lambertz J, Weiskirchen S, Landert S, Weiskirchen R. Fructose: a dietary sugar in crosstalk with microbiota contributing to the development and progression of non-alcoholic liver disease. Front Immunol. 2017;8:1159.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Born P, Zech J, Lehn H, Classen M, Lorenz R. Colonic bacterial activity determines the symptoms in people with fructose-malabsorption. Hepatogastroenterology. 1995;42:778–85.

    CAS  PubMed  Google Scholar 

  6. Jones HF, Butler RN, Brooks DA. Intestinal fructose transport and malabsorption in humans. Am J Physiol Gastrointest Liver Physiol. 2011;300:G202–6.

    Article  CAS  PubMed  Google Scholar 

  7. Eswaran S, Tack J, Chey WD. Food: the forgotten factor in the irritable bowel syndrome. Gastroenterol Clin N Am. 2011;40:141–62.

    Article  Google Scholar 

  8. Oh AR, Sohn S, Lee J, Park JM, Nam KT, Hahm KB, Kim YB, Lee HJ, Cha JY. ChREBP deficiency leads to diarrhea-predominant irritable bowel syndrome. Metabolism. 2018;85:286–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kato T, Iizuka K, Takao K, Horikawa Y, Kitamura T, Takeda J. ChREBP-knockout mice show sucrose intolerance and fructose malabsorption. Nutrients. 2018;10:340.

    Article  PubMed  Google Scholar 

  10. Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164:337–40.

    Article  CAS  PubMed  Google Scholar 

  11. Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30:492–506.

    Article  PubMed  Google Scholar 

  12. Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, Reading NC, Villablanca EJ, Wang S, Mora JR, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell. 2012;149:1578–93.

    Article  CAS  PubMed  Google Scholar 

  13. Hapfelmeier S, Lawson MA, Slack E, Kirundi JK, Stoel M, Heikenwalder M, Cahenzli J, Velykoredko Y, Balmer ML, Endt K, et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science. 2010;328:1705–9.

    Article  CAS  PubMed  Google Scholar 

  14. Bull MJ, Plummer NT. Part 1: the human gut microbiome in health and disease. Integr Med (Encinitas). 2014;13:17–22.

    PubMed  Google Scholar 

  15. Chassard C, Lacroix C. Carbohydrates and the human gut microbiota. Curr Opin Clin Nutr Metab Care. 2013;16:453–60.

    Article  CAS  PubMed  Google Scholar 

  16. Di Rienzi SC, Britton RA. Adaptation of the gut microbiota to modern dietary sugars and sweeteners. Adv Nutr. 2020;11:616–29.

    Article  PubMed  Google Scholar 

  17. Kim JE, Choi YJ, Lee SJ, Gong JE, Lim Y, Hong JT, Hwang DY. Molecular characterization of constipation disease as novel phenotypes in CRISPR-Cas9-generated leptin knockout mice with obesity. Int J Mol Sci. 2020;21:9464.

    Article  CAS  PubMed  Google Scholar 

  18. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Verjan Garcia N, Umemoto E, Saito Y, Yamasaki M, Hata E, Matozaki T, Murakami M, Jung YJ, Woo SY, Seoh JY, et al. SIRPalpha/CD172a regulates eosinophil homeostasis. J Immunol. 2011;187:2268–77.

    Article  CAS  PubMed  Google Scholar 

  20. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  21. Kim J, Guk JH, Mun SH, An JU, Song H, Kim J, Ryu S, Jeon B, Cho S. Metagenomic analysis of isolation methods of a targeted microbe, Campylobacter jejuni, from chicken feces with high microbial contamination. Microbiome. 2019;7:67.

    Article  PubMed  Google Scholar 

  22. Um HN, Baek JO, Park S, Lee EH, Jang J, Park WJ, Roh JY, Jung Y. Small intestinal immune-environmental changes induced by oral tolerance inhibit experimental atopic dermatitis. Cell Death Dis. 2021;12:243.

    Article  CAS  PubMed  Google Scholar 

  23. Stone-Dorshow T, Levitt MD. Gaseous response to ingestion of a poorly absorbed fructo-oligosaccharide sweetener. Am J Clin Nutr. 1987;46:61–5.

    Article  CAS  PubMed  Google Scholar 

  24. Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol. 2014;14:667–85.

    Article  CAS  PubMed  Google Scholar 

  25. Cerutti A. The regulation of IgA class switching. Nat Rev Immunol. 2008;8:421–34.

    Article  CAS  PubMed  Google Scholar 

  26. Hiroi T, Yanagita M, Ohta N, Sakaue G, Kiyono H. IL-15 and IL-15 receptor selectively regulate differentiation of common mucosal immune system-independent B-1 cells for IgA responses. J Immunol. 2000;165:4329–37.

    Article  CAS  PubMed  Google Scholar 

  27. Mora JR, Iwata M, Eksteen B, Song SY, Junt T, Senman B, Otipoby KL, Yokota A, Takeuchi H, Ricciardi-Castagnoli P, et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science. 2006;314:1157–60.

    Article  CAS  PubMed  Google Scholar 

  28. Kang HS, Chin RK, Wang Y, Yu P, Wang J, Newell KA, Fu YX. Signaling via LTbetaR on the lamina propria stromal cells of the gut is required for IgA production. Nat Immunol. 2002;3:576–82.

    Article  CAS  PubMed  Google Scholar 

  29. Kalla R, Kennedy NA, Ventham NT, Boyapati RK, Adams AT, Nimmo ER, Visconti MR, Drummond H, Ho GT, Pattenden RJ, et al. Serum calprotectin: a novel diagnostic and prognostic marker in inflammatory bowel diseases. Am J Gastroenterol. 2016;111:1796–805.

    Article  CAS  PubMed  Google Scholar 

  30. Pabst O, Slack E. IgA and the intestinal microbiota: the importance of being specific. Mucosal Immunol. 2020;13:12–21.

    Article  CAS  PubMed  Google Scholar 

  31. Choi YK, Johlin FC Jr, Summers RW, Jackson M, Rao SS. Fructose intolerance: an under-recognized problem. Am J Gastroenterol. 2003;98:1348–53.

    Article  CAS  PubMed  Google Scholar 

  32. Goldstein R, Braverman D, Stankiewicz H. Carbohydrate malabsorption and the effect of dietary restriction on symptoms of irritable bowel syndrome and functional bowel complaints. Isr Med Assoc J. 2000;2:583–7.

    CAS  PubMed  Google Scholar 

  33. Kim M, Astapova II, Flier SN, Hannou SA, Doridot L, Sargsyan A, Kou HH, Fowler AJ, Liang G, Herman MA. Intestinal, but not hepatic, ChREBP is required for fructose tolerance. JCI Insight. 2017;2:25.

    Article  Google Scholar 

  34. Wells JM, Brummer RJ, Derrien M, MacDonald TT, Troost F, Cani PD, Theodorou V, Dekker J, Meheust A, de Vos WM, et al. Homeostasis of the gut barrier and potential biomarkers. Am J Physiol Gastrointest Liver Physiol. 2017;312:G171–93.

    Article  PubMed  Google Scholar 

  35. Lycke NY, Bemark M. The regulation of gut mucosal IgA B-cell responses: recent developments. Mucosal Immunol. 2017;10:1361–74.

    Article  CAS  PubMed  Google Scholar 

  36. Ng LG, Mackay CR, Mackay F. The BAFF/APRIL system: life beyond B lymphocytes. Mol Immunol. 2005;42:763–72.

    Article  CAS  PubMed  Google Scholar 

  37. Suzuki K, Fagarasan S. How host-bacterial interactions lead to IgA synthesis in the gut. Trends Immunol. 2008;29:523–31.

    Article  CAS  PubMed  Google Scholar 

  38. Kruglov AA, Grivennikov SI, Kuprash DV, Winsauer C, Prepens S, Seleznik GM, Eberl G, Littman DR, Heikenwalder M, Tumanov AV, et al. Nonredundant function of soluble LTalpha3 produced by innate lymphoid cells in intestinal homeostasis. Science. 2013;342:1243–6.

    Article  CAS  PubMed  Google Scholar 

  39. Cazac BB, Roes J. TGF-beta receptor controls B cell responsiveness and induction of IgA in vivo. Immunity. 2000;13:443–51.

    Article  CAS  PubMed  Google Scholar 

  40. Rengarajan S, Knoop KA, Rengarajan A, Chai JN, Grajales-Reyes JG, Samineni VK, Russler-Germain EV, Ranganathan P, Fasano A, Sayuk GS, et al. A potential role for stress-induced microbial alterations in IgA-associated irritable bowel syndrome with diarrhea. Cell Rep Med. 2020;1:100124.

    Article  CAS  PubMed  Google Scholar 

  41. Bunker JJ, Bendelac A. IgA responses to microbiota. Immunity. 2018;49:211–24.

    Article  CAS  PubMed  Google Scholar 

  42. Takeuchi T, Miyauchi E, Kanaya T, Kato T, Nakanishi Y, Watanabe T, Kitami T, Taida T, Sasaki T, Negishi H, et al. Acetate differentially regulates IgA reactivity to commensal bacteria. Nature. 2021;595:560–4.

    Article  CAS  PubMed  Google Scholar 

  43. Rajput M, Momin T, Singh A, Banerjee S, Villasenor A, Sheldon J, Paudel P, Rajput R. Determining the association between gut microbiota and its metabolites with higher intestinal Immunoglobulin A response. Vet Anim Sci. 2023;19:100279.

    Article  PubMed  Google Scholar 

  44. Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489:231–41.

    Article  CAS  PubMed  Google Scholar 

  45. Zuo L, Kuo WT, Turner JR. Tight junctions as targets and effectors of mucosal immune homeostasis. Cell Mol Gastroenterol Hepatol. 2020;10:327–40.

    Article  PubMed  Google Scholar 

  46. Zhou Q, Zhang B, Verne GN. Intestinal membrane permeability and hypersensitivity in the irritable bowel syndrome. Pain. 2009;146:41–6.

    Article  CAS  PubMed  Google Scholar 

  47. Montrose DC, Nishiguchi R, Basu S, Staab HA, Zhou XK, Wang H, Meng L, Johncilla M, Cubillos-Ruiz JR, Morales DK, et al. Dietary fructose alters the composition, localization, and metabolism of gut microbiota in association with worsening colitis. Cell Mol Gastroenterol Hepatol. 2021;11:525–50.

    Article  CAS  PubMed  Google Scholar 

  48. Michielan A, D’Inca R. Intestinal permeability in inflammatory bowel disease: pathogenesis, clinical evaluation, and therapy of leaky gut. Mediators Inflamm. 2015;2015:628157.

    Article  PubMed  Google Scholar 

  49. Pruenster M, Vogl T, Roth J, Sperandio M. S100A8/A9: from basic science to clinical application. Pharmacol Ther. 2016;167:120–31.

    Article  CAS  PubMed  Google Scholar 

  50. Iizuka K, Bruick RK, Liang G, Horton JD, Uyeda K. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci U S A. 2004;101:7281–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Gachon University Core-facility for Cell to In-vivo imaging for flow cytometer analysis.

Funding

A-RO is a recipient of a Global Ph.D. fellowship from the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Education (NRF-2018H1A2A1062963). This study was supported by a National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIT) (No. NRF-2020R1A2C1003351 and NRF-2021R1A5A2030333 to YJ, and NRF-2022R1A2C1012833 to J-YC), the Korea Mouse Phenotyping Project (2013M3A9D5072550) to J-YC, and the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) funded by the Ministry of Health & Welfare (Grant number HI14C1135) to J-YC.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: YJ and J-YC; methodology: JJ, SH, A-RO, YJ and J-YC; formal analysis and investigation: JJ, SH, A-RO, SP, UY, JGK, SP; writing—original draft preparation: JJ, SH, A-RO; writing—review and editing: YJ and J-YC; funding acquisition: A-RO, YJ and J-YC; resources: YJ and J-YC; supervision: YJ and J-YC. All authors reviewed the manuscript.

Corresponding authors

Correspondence to YunJae Jung or Ji-Young Cha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 929 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, J., Hwang, S., Oh, AR. et al. Fructose malabsorption in ChREBP-deficient mice disrupts the small intestine immune microenvironment and leads to diarrhea-dominant bowel habit changes. Inflamm. Res. 72, 769–782 (2023). https://doi.org/10.1007/s00011-023-01707-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01707-1

Keywords

Navigation