Skip to main content

Advertisement

Log in

CX3CR1 regulates gut microbiota and metabolism. A risk factor of type 2 diabetes

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Objective

The intestinal microbiota to immune system crosstalk is a major regulator of metabolism and hence metabolic diseases. An impairment of the chemokine receptor CX3CR1, as a key regulator shaping intestinal microbiota under normal chow feeding, could be one of the early events of dysglycemia.

Methods

We studied the gut microbiota ecology by sequencing the gut and tissue microbiota. We studied its role in energy metabolism in CX3CR1-deficent and control mice using various bioassays notably the glycemic regulation during fasting and the respiratory quotient as two highly sensitive physiological features. We used antibiotics and prebiotics treatments, and germ free mouse colonization.

Results

We identify that CX3CR1 disruption impairs gut microbiota ecology and identified a specific signature associated to the genotype. The glycemic control during fasting and the respiratory quotient throughout the day are deeply impaired. A selected four-week prebiotic treatment modifies the dysbiotic microbiota and improves the fasting state glycemic control of the CX3CR1-deficent mice and following a glucose tolerance test. A 4 week antibiotic treatment also improves the glycemic control as well. Eventually, germ free mice colonized with the microbiota from CX3CR1-deficent mice developed glucose intolerance.

Conclusions

CX3CR1 is a molecular mechanism in the control of the gut microbiota ecology ensuring the maintenance of a steady glycemia and energy metabolism. Its impairment could be an early mechanism leading to gut microbiota dysbiosis and the onset of metabolic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hotamisligil GS (2017) Inflammation, metaflammation and immunometabolic disorders. Nature 542(7640):177–185. https://doi.org/10.1038/nature21363

    Article  CAS  PubMed  Google Scholar 

  2. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jorgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clement K, Dore J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T, Meta HITc, Bork P, Wang J, Ehrlich SD, Pedersen O, (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500(7464):541–546. https://doi.org/10.1038/nature12506

    Article  CAS  PubMed  Google Scholar 

  3. Burcelin R, Garidou L, Pomie C (2012) Immuno-microbiota cross and talk: the new paradigm of metabolic diseases. Semin Immunol 24(1):67–74. https://doi.org/10.1016/j.smim.2011.11.011

    Article  CAS  PubMed  Google Scholar 

  4. McPhee JB, Schertzer JD (2015) Immunometabolism of obesity and diabetes: microbiota link compartmentalized immunity in the gut to metabolic tissue inflammation. Clin Sci (Lond) 129(12):1083–1096. https://doi.org/10.1042/CS20150431

    Article  CAS  Google Scholar 

  5. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Jian M, Zhou Y, Li Y, Zhang X, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich SD (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65. https://doi.org/10.1038/nature08821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Dore J, Antolin M, Artiguenave F, Blottiere HM, Almeida M, Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Foerstner KU, Friss C, van de Guchte M, Guedon E, Haimet F, Huber W, van Hylckama-Vlieg J, Jamet A, Juste C, Kaci G, Knol J, Lakhdari O, Layec S, Le Roux K, Maguin E, Merieux A, Melo Minardi R, M’Rini C, Muller J, Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrejon A, Turner K, Vandemeulebrouck G, Varela E, Winogradsky Y, Zeller G, Weissenbach J, Ehrlich SD, Bork P (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180. https://doi.org/10.1038/nature09944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Molinaro A, Caesar R, Holm LM, Tremaroli V, Cani PD, Backhed F (2017) Host-microbiota interaction induces bi-phasic inflammation and glucose intolerance in mice. Mol Metab 6(11):1371–1380. https://doi.org/10.1016/j.molmet.2017.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55–60. https://doi.org/10.1038/nature11450

    Article  CAS  Google Scholar 

  9. Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, Forslund K, Hildebrand F, Prifti E, Falony G, Le Chatelier E, Levenez F, Dore J, Mattila I, Plichta DR, Poho P, Hellgren LI, Arumugam M, Sunagawa S, Vieira-Silva S, Jorgensen T, Holm JB, Trost K, Meta HITC, Kristiansen K, Brix S, Raes J, Wang J, Hansen T, Bork P, Brunak S, Oresic M, Ehrlich SD, Pedersen O (2016) Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535(7612):376–381. https://doi.org/10.1038/nature18646

    Article  CAS  PubMed  Google Scholar 

  10. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmee E, Cousin B, Sulpice T, Chamontin B, Ferrieres J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56(7):1761–1772

    Article  CAS  Google Scholar 

  11. Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermudez-Humaran LG, Smirnova N, Berge M, Sulpice T, Lahtinen S, Ouwehand A, Langella P, Rautonen N, Sansonetti PJ, Burcelin R (2011) Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med 3(9):559–572. https://doi.org/10.1002/emmm.201100159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garidou L, Pomie C, Klopp P, Waget A, Charpentier J, Aloulou M, Giry A, Serino M, Stenman L, Lahtinen S, Dray C, Iacovoni JS, Courtney M, Collet X, Amar J, Servant F, Lelouvier B, Valet P, Eberl G, Fazilleau N, Douin-Echinard V, Heymes C, Burcelin R (2015) The gut microbiota regulates intestinal CD4 T cells expressing RORgammat and controls metabolic disease. Cell Metab 22(1):100–112. https://doi.org/10.1016/j.cmet.2015.06.001

    Article  CAS  PubMed  Google Scholar 

  13. Luche E, Cousin B, Garidou L, Serino M, Waget A, Barreau C, Andre M, Valet P, Courtney M, Casteilla L, Burcelin R (2013) Metabolic endotoxemia directly increases the proliferation of adipocyte precursors at the onset of metabolic diseases through a CD14-dependent mechanism. Mol Metab 2(3):281–291. https://doi.org/10.1016/j.molmet.2013.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vallon-Eberhard A, Landsman L, Yogev N, Verrier B, Jung S (2006) Transepithelial pathogen uptake into the small intestinal lamina propria. J Immunol 176(4):2465–2469. https://doi.org/10.4049/jimmunol.176.4.2465

    Article  CAS  PubMed  Google Scholar 

  15. Kim M, Galan C, Hill AA, Wu WJ, Fehlner-Peach H, Song HW, Schady D, Bettini ML, Simpson KW, Longman RS, Littman DR, Diehl GE (2018) Critical Role for the Microbiota in CX3CR1(+) Intestinal Mononuclear Phagocyte Regulation of Intestinal T Cell Responses. Immunity 49(1):151-163e155. https://doi.org/10.1016/j.immuni.2018.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hadis U, Wahl B, Schulz O, Hardtke-Wolenski M, Schippers A, Wagner N, Muller W, Sparwasser T, Forster R, Pabst O (2011) Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34(2):237–246. https://doi.org/10.1016/j.immuni.2011.01.016

    Article  CAS  PubMed  Google Scholar 

  17. Paisse S, Valle C, Servant F, Courtney M, Burcelin R, Amar J, Lelouvier B (2016) Comprehensive description of blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing. Transfusion 56:1138–1147. https://doi.org/10.1111/trf.13477

    Article  CAS  PubMed  Google Scholar 

  18. Sookoian S, Salatino A, Castano GO, Landa MS, Fijalkowky C, Garaycoechea M, Pirola CJ (2020) Intrahepatic bacterial metataxonomic signature in non-alcoholic fatty liver disease. Gut. https://doi.org/10.1136/gutjnl-2019-318811

    Article  PubMed  Google Scholar 

  19. Hoyles L, Fernandez-Real JM, Federici M, Serino M, Abbott J, Charpentier J, Heymes C, Luque JL, Anthony E, Barton RH, Chilloux J, Myridakis A, Martinez-Gili L, Moreno-Navarrete JM, Benhamed F, Azalbert V, Blasco-Baque V, Puig J, Xifra G, Ricart W, Tomlinson C, Woodbridge M, Cardellini M, Davato F, Cardolini I, Porzio O, Gentileschi P, Lopez F, Foufelle F, Butcher SA, Holmes E, Nicholson JK, Postic C, Burcelin R, Dumas ME (2018) Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med 24(7):1070–1080. https://doi.org/10.1038/s41591-018-0061-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burcelin R, Crivelli V, Dacosta A, Roy-Tirelli A, Thorens B (2002) Heterogeneous metabolic adaptation of C57BL/6J mice to high-fat diet. Am J Physiol Endocrinol Metab 282(4):E834-842

    Article  CAS  Google Scholar 

  21. Serino M, Luche E, Gres S, Baylac A, Berge M, Cenac C, Waget A, Klopp P, Iacovoni J, Klopp C, Mariette J, Bouchez O, Lluch J, Ouarne F, Monsan P, Valet P, Roques C, Amar J, Bouloumie A, Theodorou V, Burcelin R (2012) Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 61(4):543–553. https://doi.org/10.1136/gutjnl-2011-301012

    Article  CAS  PubMed  Google Scholar 

  22. Knauf C, Cani PD, Kim DH, Iglesias MA, Chabo C, Waget A, Colom A, Rastrelli S, Delzenne NM, Drucker DJ, Seeley RJ, Burcelin R (2008) Role of central nervous system glucagon-like Peptide-1 receptors in enteric glucose sensing. Diabetes 57(10):2603–2612

    Article  CAS  Google Scholar 

  23. Besnard P, Christensen JE, Brignot H, Bernard A, Passilly-Degrace P, Nicklaus S, Pais de Barros JP, Collet X, Lelouvier B, Servant F, Blasco-Baque V, Verges B, Lagrost L, Feron G, Burcelin R (2018) Obese Subjects with specific gustatory papillae microbiota and salivary cues display an impairment to sense lipids. Sci Rep 8(1):6742. https://doi.org/10.1038/s41598-018-24619-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lluch J, Servant F, Paisse S, Valle C, Valiere S, Kuchly C, Vilchez G, Donnadieu C, Courtney M, Burcelin R, Amar J, Bouchez O, Lelouvier B (2015) The characterization of novel tissue microbiota using an optimized 16S metagenomic sequencing pipeline. PLoS ONE 10(11):e0142334. https://doi.org/10.1371/journal.pone.0142334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Escudie F, Auer L, Bernard M, Mariadassou M, Cauquil L, Vidal K, Maman S, Hernandez-Raquet G, Combes S, Pascal G (2017) FROGS: Find. Bioinformatics, Rapidly, OTUs with Galaxy Solution. https://doi.org/10.1093/bioinformatics/btx791

    Book  Google Scholar 

  26. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101(44):15718–15723

    Article  Google Scholar 

  27. Holmes E, Kinross J, Gibson GR, Burcelin R, Jia W, Pettersson S, Nicholson JK (2012) Therapeutic modulation of microbiota-host metabolic interactions. Sci Transl Med 4(137):137rv136. https://doi.org/10.1126/scitranslmed.3004244

    Article  CAS  Google Scholar 

  28. Hernandez-Baixauli J, Quesada-Vazquez S, Marine-Casado R, Gil Cardoso K, Caimari A, Del Bas JM, Escote X, Baselga-Escudero L (2020) Detection of early disease risk factors associated with metabolic syndrome: a new era with the NMR metabolomics assessment. Nutrients. https://doi.org/10.3390/nu12030806

    Article  PubMed  PubMed Central  Google Scholar 

  29. Federici M (2019) Gut microbiome and microbial metabolites: a new system affecting metabolic disorders. J Endocrinol Invest 42(9):1011–1018. https://doi.org/10.1007/s40618-019-01022-9

    Article  CAS  PubMed  Google Scholar 

  30. Lin HV, Frassetto A, Kowalik EJ Jr, Nawrocki AR, Lu MM, Kosinski JR, Hubert JA, Szeto D, Yao X, Forrest G, Marsh DJ (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 7(4):e35240. https://doi.org/10.1371/journal.pone.0035240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu J, Lin S, Zheng B, Cheung PCK (2018) Short-chain fatty acids in control of energy metabolism. Crit Rev Food Sci Nutr 58(8):1243–1249. https://doi.org/10.1080/10408398.2016.1245650

    Article  CAS  PubMed  Google Scholar 

  32. Canfora EE, Jocken JW, Blaak EE (2015) Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 11(10):577–591. https://doi.org/10.1038/nrendo.2015.128

    Article  CAS  PubMed  Google Scholar 

  33. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, Backhed F, Mithieux G (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156(1–2):84–96. https://doi.org/10.1016/j.cell.2013.12.016

    Article  CAS  PubMed  Google Scholar 

  34. Marino E, Richards JL, McLeod KH, Stanley D, Yap YA, Knight J, McKenzie C, Kranich J, Oliveira AC, Rossello FJ, Krishnamurthy B, Nefzger CM, Macia L, Thorburn A, Baxter AG, Morahan G, Wong LH, Polo JM, Moore RJ, Lockett TJ, Clarke JM, Topping DL, Harrison LC, Mackay CR (2017) Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol 18(5):552–562. https://doi.org/10.1038/ni.3713

    Article  CAS  PubMed  Google Scholar 

  35. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504(7480):446–450. https://doi.org/10.1038/nature12721

    Article  CAS  PubMed  Google Scholar 

  36. Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, Falony G, Raes J, Maiter D, Delzenne NM, de Barsy M, Loumaye A, Hermans MP, Thissen JP, de Vos WM, Cani PD (2019) Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med 25(7):1096–1103. https://doi.org/10.1038/s41591-019-0495-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shah R, O’Neill SM, Hinkle C, Caughey J, Stephan S, Lynch E, Bermingham K, Lynch G, Ahima RS, Reilly MP (2015) Metabolic effects of CX3CR1 deficiency in diet-induced obese mice. PLoS ONE 10(9):e0138317. https://doi.org/10.1371/journal.pone.0138317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Winkler Z, Kuti D, Polyak A, Juhasz B, Gulyas K, Lenart N, Denes A, Ferenczi S, Kovacs KJ (2019) Hypoglycemia-activated hypothalamic microglia impairs glucose counterregulatory responses. Sci Rep 9(1):6224. https://doi.org/10.1038/s41598-019-42728-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors thank Barreira Y. and her team from the Animal Care and Facility of germ free mice HUMICE of Rangueil Hospital (UMS US006/Inserm), Maoret J.J. and Martins F. from the Genomic and Transcriptomic facility (GET TQ) Zakaroff-Girard A. and Riant E. (Flow Cytometry Facility Rangueil-I2MC/TRI Plateform) for their skillful technical assistance.

Funding

This grant was supported by subsides from EFSD and Lilly Research to V. D-E and RB, the Institut National de la Santé, de l’Enseignement de la Recherche Medical, and the Région Midi Pyrénées to R.B.

Author information

Authors and Affiliations

Authors

Contributions

RB, CP, VD-E, designed the experiments, interpreted the data and wrote the manuscript. CP, PK, CG, JC, VD-E, AW, VA, LG performed the experiments. FS performed the bioinformatics analyses.

Corresponding authors

Correspondence to Victorine Douin-Echinard or Rémy Burcelin.

Ethics declarations

Conflicts of interest

RB declares shares in VAIOMER and consultant fees, FB and TS declares shares in Physiogenex. FB, EB and TS are employees of Physiogenex. BL and FS are employees of VAIOMER.

Additional information

Managed by Massimo Federici.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary information 1 (PPTX 1236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pomié, C., Servant, F., Garidou, L. et al. CX3CR1 regulates gut microbiota and metabolism. A risk factor of type 2 diabetes. Acta Diabetol 58, 1035–1049 (2021). https://doi.org/10.1007/s00592-021-01682-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-021-01682-1

Keywords

Navigation