Skip to main content

Advertisement

Log in

Linking GATA-3 and interleukin-13: implications in asthma

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Introduction

Asthma is one of the serious global health problems and cause of huge mortality and morbidity. It is characterized by persistent airway inflammation, airway hyperresponsiveness, increased IgE levels and mucus hypersecretion. Asthma is mediated by dominant Th2 immune response, causing enhanced expression of Th2 cytokines. These cytokines are responsible for the various pathological changes associated with allergic asthma.

Materials and methods

The role of Th2 cells in the pathogenesis of the asthma is primarily mediated through the cytokine IL-13, also produced by type 2 innate lymphoid cells, that comes under the transcriptional regulation of GATA3. In this review we will try to explore the link between IL-13 and GATA3 in the progression and regulation of asthma and its possible role as a therapeutic target.

Conclusion

Inhibition of GATA3 activity or blockade of GATA3 expression may attenuate the interleukin-13 mediated asthma phenotypes. So, GATA3 might be a potential therapeutic target for the treatment of allergic asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Walsh GM, McDougall CM. The resolution of airway inflammation in asthma and COPD. In: Rossi AG, Sawatzky D, editors. Progress in inflammation research. Basel: Birkhauser Verlag A.G; 2007. p. 159–191.

  2. Braman SS. The global burden of asthma. Chest. 2006;130:4S–12S.

    PubMed  Google Scholar 

  3. McGrath KW, Icitovic N, Boushey HA, Lazarus SC, Sutherland ER, Chinchilli VM, Fahy JV. A large subgroup of mild-to-moderate asthma is persistently noneosinophilic. Am J Respir Crit Care. 2012;185:612–9.

    CAS  Google Scholar 

  4. Anderson GP. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet. 2008;372:1107–19.

    PubMed  Google Scholar 

  5. Tattersfield AE, Knox AJ, Britton JR, Hall IP. Asthma. Lancet. 2002;360:1313–22.

    CAS  PubMed  Google Scholar 

  6. Barnes PJ. Pathophysiology of asthma. Eur Respir Mon. 2003;8:84–113.

    Google Scholar 

  7. Payne DN, Rogers AV, Adelroth E, Bandi V, Guntupalli KK, Bush A, Jeffery PK. Early thickening of the reticular basement membrane in children with difficult asthma. Am J Respir Crit Care Med. 2003;167:78–82.

    PubMed  Google Scholar 

  8. Allen D, Adinoff MD, Roger J, Hollister MD. Steroid-induced fractures and bone loss in patients with asthma. N Engl J Med. 1983;309:265–8.

    Google Scholar 

  9. Sont JK, Han J, van-Krieken JM, et al. Relationship between the inflammatory infiltrate in bronchial biopsy specimens and clinical severity of asthma in patients treated with inhaled steroids. Thorax. 1996;51:496–502.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Silverman AB. Treatment of steroid dependent asthmatics, US 5405842 A. 1995; 08/187, 915.

  11. Comet R, Domingo C, Larrosa M, Morón A, Rué M, Amengual MJ, Marín A. Benefits of low weekly doses of methotrexate in steroid-dependent asthmatic patients. A double-blind, randomized, placebo-controlled study. Respir Med. 2006;100:411–9.

    PubMed  Google Scholar 

  12. Haldar P, Brightling CE, Hargadon B. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med. 2009;360:973–84.

    CAS  PubMed  Google Scholar 

  13. Kraft M. Asthma phenotypes and interleukin-13—moving closer to personalized medicine. N Engl J Med. 2011;365:1141–4.

    CAS  PubMed  Google Scholar 

  14. Antoniu SA, Pitrakinra A. Dual IL-4/IL-13 antagonist for the potential treatment of asthma and eczema. Curr Opin Invest Drugs. 2010;11:1286–94.

    CAS  Google Scholar 

  15. Woodruff PG, Modrek B, et al. T-helper type 2—driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med. 2009;180:388–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Singh D, Richards D, Knowles RG, Schwartz S, Woodcock A, Langley S, O’Connor BJ. Selective Inducible nitric oxide synthase inhibition has no effect on allergen challenge in asthma. Am J Respir Crit Care Med. 2007;176:988–93.

    CAS  PubMed  Google Scholar 

  17. Woodruff PG, Boushey HA, Dolganov GM, et al. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc Natl Acad Sci USA. 2007;2:15858–63.

    Google Scholar 

  18. Wochnik GM, Rüegg J, Abel GA, Schmidt U, Holsboer F, Rein T. FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J Biol Chem. 2005;280:4609–16.

    CAS  PubMed  Google Scholar 

  19. Denny WB, Valentine DL, Reynolds PD, Smith DF, Scammell JG. Squirrel monkey immunophilin FKBP51 is a potent inhibitor of glucocorticoid receptor binding. Endocrinology. 2000;141:4107–13.

    CAS  PubMed  Google Scholar 

  20. Caramori G, Groneberg D, Ito K, Casolari P, Adcock IM, Papi A. New drugs targeting Th2 lymphocytes in asthma. J Occup Med Toxicol. 2008;3:1–6.

    Google Scholar 

  21. Stephen TH, Riccardo P. Treatment strategies for allergy and asthma. Nat Rev Immunol. 2008;8:218–30.

    Google Scholar 

  22. Morrisey EE, Ip HS, Lu MM, Parmacek MS. GATA-6: a zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. Dev Biol. 1996;177:309–22.

    CAS  PubMed  Google Scholar 

  23. Arceci RJ, King AA, Simon MC, Orkin SH, Wilson DB. Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol Cell Biol. 1993;13:2235–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Ho IC, Vorhees P, Marin N, Oakley BK, Tsai SF, Orkin SH, Leiden JM. Human GATA-3: a lineage-restricted transcription factor that regulates the expression of the T cell receptor alpha gene. EMBO J. 1991;10:1187–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Oosterwegel M, Timmerman J, Leiden J, Clevers H. Expression of GATA-3 during lymphocyte differentiation and mouse embryogenesis. Dev Immunol. 1992;3:1–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Samson SI, Richard O, Tavian M, Ranson T, Vosshenrich CA, Colucci F, Buer J, Grosveld F, Godin I, Di-Santo JP. GATA-3 promotes maturation. IFN-γ production and liver-specific homing of NK cells. Immunity. 2003;19:701–11.

    CAS  PubMed  Google Scholar 

  27. O’Garra A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity. 1998;8:275–83.

    PubMed  Google Scholar 

  28. Murphy KM, Ouyang W, Farrar JD, Yang J, Ranganath S, Asnagli H, Afkarian M, Murphy TL. Signaling and transcription in T helper development. Annu Rev Immunol. 2000;18:451–94.

    CAS  PubMed  Google Scholar 

  29. Glimcher LH, Murphy KM. Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes Dev. 2000;14:1693–711.

    CAS  PubMed  Google Scholar 

  30. Wynn TA. IL-13 effector functions. Annu Rev Immunol. 2003;21:425–56.

    CAS  PubMed  Google Scholar 

  31. Wills-Karp M. Interleukin-13 in asthma pathogenesis. Immunol Rev. 2004;202:175–90.

    CAS  PubMed  Google Scholar 

  32. Caramori G, Lim S, Ito K, Tomita K, Oates T, Jazrawi E, Chung KF, Barnes PJ, Adcock IM. Expression of GATA family of transcription factors in T-cells, monocytes and bronchial biopsies. Eur Respir J. 2001;18:466–73.

    CAS  PubMed  Google Scholar 

  33. Wohlfert EA, Grainger JR, Bouladoux N. GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice. J Clin Invest. 2011;121:4503–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Usui T, Nishikomori R, Kitani A, Strober W. GATA-3 suppresses Th1 development by downregulation of Stat4 and not through effects on IL-12R beta2 chain or T-bet. Immunity. 2003;18:415–28.

    CAS  PubMed  Google Scholar 

  35. Ouyang W, Ranganath SH, Weindel K, Bhattacharya D, Murphy TL, Sha WC, Murphy KM. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity. 1998;9:745–55.

    CAS  PubMed  Google Scholar 

  36. Ray A, Cohn L. Th2 cells and GATA-3 in asthma: new insights into the regulation of airway inflammation. J Clin Invest. 1999;104:985–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. McLane MP, Haczku A, Van-de-Rijn M, Weiss C, Ferrante V, MacDonald D, McLane MP, Haczku A, Van-de-Rijn M, Weiss C, Ferrante V, MacDonald D, Renauld JC, Nicolaides NC, Holroyd KJ, Levitt RC. Interleukin-9 promotes allergen-induced eosinophilic inflammation and airway hyper responsiveness in transgenic mice. Am J Respir Cell Mol Biol. 1998;19:713–20.

    CAS  PubMed  Google Scholar 

  38. Yao X, Zha W, Song W, et al. Coordinated regulation of IL-4 and IL-13 expression in human T cells: 3C analysis for DNA looping. Biochem Biophys Res Commun. 2012;417:996–1001.

    CAS  PubMed  Google Scholar 

  39. Jee YK, Gilmour J, Kelly A, et al. Repression of interleukin-5 transcription by the glucocorticoid receptor targets gata3 signaling and involves histone deacetylase recruitment. J Boil Chem. 2005;280:23243–50.

    CAS  Google Scholar 

  40. Grogan JL, Mohrs M, Harmon B, Lacy DA, Sedat JW, Locksley RM. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity. 2001;14:205–15.

    CAS  PubMed  Google Scholar 

  41. Yamane H, Zhu J, Paul WE. Independent roles for IL-2 and GATA-3 in stimulating naive CD4 + T cells to generate a Th2-inducing cytokine environment. J Exp Med. 2005;202:793–804.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Avni O, Lee D, Macian F, Szabo SJ, Glimcher LH, Rao A. TH cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nat Immunol. 2002;3:643–51.

    CAS  PubMed  Google Scholar 

  43. Lee GR, Fields PE, Flavell RA. Regulation of IL-4 gene expression by distal regulatory elements and GATA-3 at the chromatin level. Immunity. 2001;14:447–59.

    CAS  PubMed  Google Scholar 

  44. Ouyang W, Löhning M, Gao Z, Assenmacher M, Ranganath S, Radbruch A, Murphy KM. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity. 2007;12:27–37.

    Google Scholar 

  45. Amsen D, Antov A, Jankovic D, Sher A, Radtke F, Souabni A, Busslinger M, McCright B, Gridley T, Flavell RA. Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity. 2007;27:89–99.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Fang TC, Yashiro-Ohtani Y, Bianco CD, Knoblock DM, Blacklow SC, Pear WS. Notch directly regulates Gata3 expression during T helper 2 cell differentiation. Immunity. 2007;27:100–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Asnagli H, Afkarian M, Murphy KM. Cutting edge: identification of an alternative GATA-3 promoter directing tissue-specific gene expression in mouse and human. J Immunol. 2002;168:4268–71.

    CAS  PubMed  Google Scholar 

  48. Zhu J, Cote-Sierra J, Guo L, Paul WE. Stat5 activation plays a critical role in Th2 Differentiation. Immunity. 2003;19:739–48.

    CAS  PubMed  Google Scholar 

  49. Cote-Sierra J, Foucras G, Guo L, Chiodetti L, Young HA, Hu-Li J, Zhu J, Paul WE. Interleukin 2 plays a central role in Th2 differentiation. Proc Natl Acad Sci. 2004;101:3880–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Piper Edward, Brightling Christopher, Niven Robert, et al. A phase II placebo-controlled study of tralokinumab in moderate-to-severe asthma. Eur Respir J. 2013;41:330–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Gauvreau GM, Boulet LP, Cockcroft DW, et al. Effects of interleukin-13 blockade on allergen-induced airway responses in mild atopic asthma. Am J Respir Crit Care Med. 2011;183:1007–14.

    CAS  PubMed  Google Scholar 

  52. Pueringer RJ, Hunninghake GW. Inflammation and airway reactivity in asthma. Am J Med. 1992;92:32S–8S.

    CAS  PubMed  Google Scholar 

  53. White MV. Nasal cholinergic hyper responsiveness in atopic subjects studied out of season. J Allergy Clin Immunol. 1993;92:278–87.

    CAS  PubMed  Google Scholar 

  54. Grunig G, Warnock M, Wakil AE, Venkayya R, Brombacher F, Rennick DM, Sheppard D, Mohrs M, Donaldson DD, Locksley RM, Corry DB. Requirement for IL-13 independently of IL-4 in experimental asthma. Science. 1998;282:2261–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Karp MW, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, Donaldson DD. Interleukin-13: central mediator of allergic asthma. Science. 1998;282:2258–61.

    PubMed  Google Scholar 

  56. Haczku A, Cao Y, Vass G, Kierstein S, Nath P, Atochina-Vasserman EN, Scan-lon ST, Li L, Griswold DE, Chung KF, Poulain FR, Hawgood S, Beers MF, Crouch EC. IL-4 and IL-13 form a negative feedback circuit with surfactant protein-D in the allergic airway response. J Immunol. 2006;176:3557–65.

    CAS  PubMed  Google Scholar 

  57. Madan T, Reid KB, Singh M, Sarma PU, Kishore U. Susceptibility of mice genetically deficient in the surfactant protein (SP)-A or SP-D gene to pulmonary hypersensitivity induced by antigens and allergens of Aspergillus fumigates. J Immunol. 2005;174:6943–54.

    CAS  PubMed  Google Scholar 

  58. Walter DM, McIntire JJ, Berry G, McKenzie AN, Donaldson DD, DeKruyff RH, Umetsu DT. Critical role for IL-13 in the development of allergen-induced airway hyperreactivity. J Immunol. 2001;167:4668–75.

    CAS  PubMed  Google Scholar 

  59. Heinzmann A, Mao XQ, Akaiwa M, Kreomer RT, Gao PS, Ohshima K, Umeshita R, Abe Y, Braun S, Yamashita T, Roberts MH, Sugimoto R, Arima K, Arinobu Y, Yu B, Kruse S, Enomoto T, Dake Y, Kawai M, Shimazu S, Sasaki S, Adra CN, Kitaichi M, Inoue H, Yamauchi K, Tomichi N, Kurimoto F, Hamasaki N, Hopkin JM, Izuhara K, Shirakawa T, Deichmann KA. Genetic variants of IL-13 signalling and human asthma and atopy. Hum Mol Genet. 2000;9:549–59.

    CAS  PubMed  Google Scholar 

  60. Eum SY, Maghni K, et al. IL-13 may mediate allergen-induced hyperresponsiveness independently of IL-5 or eotaxin by effects on airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2005;288:576–84.

    Google Scholar 

  61. Walsh GM. Novel cytokine-directed therapies for asthma. Discov Med. 2011;11:283–91.

    PubMed  Google Scholar 

  62. Fallon PG, Emson CL, Smith P, McKenzie AN. IL-13 over expression pre-disposes to anaphylaxis following antigen sensitization. J Immunol. 2001;166:2712–6.

    CAS  PubMed  Google Scholar 

  63. McKenzie GJ, Emson CL, Bell SE, Anderson S, Fallon P, Zurawski G, Murray R, Grencis R, McKenzie AN. Impaired development of Th2 cells in IL-13-deficient mice. Immunity. 1998;9:423–32.

    CAS  PubMed  Google Scholar 

  64. Webb DC, McKenzie AN, Koskinen AM, Yang M, Mattes J, Foster PS. Integrated signals between IL-13, IL-4, and IL-5 regulate airways hyperreactivity. J Immunol. 2000;165:108–13.

    CAS  PubMed  Google Scholar 

  65. Taube C, Duez C, Cui ZH, Takeda K, Rha YH, Park JW, Balhorn A, Donaldson DD, Dakhama A, Gelfand EW. The role of IL-13 in established allergic airway disease. J Immunol. 2002;169:6482–9.

    CAS  PubMed  Google Scholar 

  66. Luttmann W, Knoechel B, Foerster M, Matthys H, Virchow JC, Kroegel C. Activation of human eosinophils by IL-13. Induction of CD69 surface anti-gen, its relationship to messenger RNA expression, and promotion of cellular viability. J Immunol. 1996;157:1678–83.

    CAS  PubMed  Google Scholar 

  67. Pope SM, Brandt EB, Mishra A, Hogan SP, Zimmermann N, Matthaei KI, Foster PS, Rothenberg ME. IL-13 induces eosinophil recruitment into the lung by an IL-5- and eotaxin-dependent mechanism. J Allergy Clin Immunol. 2001;108:594–601.

    CAS  PubMed  Google Scholar 

  68. Lam KP, Chu YT, Lee MS, Chen HN, Wang WL, Tok TS, Chin YY, Chen SC, Kuo CH, Hung CH. Inhibitory effects of albuterol and fenoterol on RANTES and IP-10 expression in bronchial epithelial cells. Pediatr Allergy Immunol. 2011;22:431–9.

    PubMed  Google Scholar 

  69. Tomasiak-Łozowska MM, Bodzenta-Łukaszyk A, Tomasiak M, Skiepko R, Zietkowski Z. The role of interleukin 13 and interleukin 5 in asthma. Postepy Hig Med Dosw. 2010;19:146–55.

    Google Scholar 

  70. Taku K, Kiyosh T. IL-5- and eosinophil-mediated inflammation: from discovery to therapy. Int Immunol. 2009;21:1303–9.

    Google Scholar 

  71. Doucet C, Brouty-Boye D, Pottin-Clemenceau C, Canonica GW, Jasmin C, Azzarone B. Interleukin (IL) 4 and IL-13 act on human lung fibroblasts implication in asthma. J Clin Invest. 1998;101:2129–39.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Fulkerson PC, Fischetti CA, Hassman LM, Nikolaidis NM, Rothenberg ME. Persistent effects induced by IL-13 in the lung. Am J Respir Cell Mol Biol. 2006;35:337–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Blease K, Schuh JM, Jakubzick C, Lukacs NW, Kunke SL, Joshi BH, et al. Stat6-deficient mice develop airway hyperresponsiveness and peribronchial fibrosis during chronic fungal asthma. Am J Pathol. 2002;160:481–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Kumar RK, Herbert C, Yang M, Koskinen AM, McKenzie AN, Foster PS. Role of interleukin-13 in eosinophil accumulation and airway remodelling in a mouse model of chronic asthma. Clin Exp Allergy. 2002;32:1104–11.

    CAS  PubMed  Google Scholar 

  75. Vercelli D, Jabara HH, Arai KI, Geha RS. Induction of human IgE synthesis requires interleukin 4 and T/B interactions involving the T cell receptor/CD3 complex and MHC class II antigens. J Exp Med. 1989;169:1295–307.

    CAS  PubMed  Google Scholar 

  76. Punnonen J, Aversa G, Cocks BG, McKenzie ANJ, Menon S, Zurawski G. Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc Natl Acad Sci. 1993;90:3730–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Punnonen J, Cocks BG, De Vries JE. IL-4 induces germ-line IgE heavy chain gene transcription in human fetal pre-B cells. Evidence for differential expression of functional IL-4 and IL-13 receptors during B cell ontogeny. J Immunol. 1995;155:4248–54.

    CAS  PubMed  Google Scholar 

  78. Whittaker L, Niu N, Temann UA, Stoddard A, Flavell RA, Ray A. Interleukin-13 mediates a fundamental pathway for airway epithelial mucus induced by CD4 T cells and interleukin-9. Am J Respir Cell Mol Biol. 2002;27:593–602.

    CAS  PubMed  Google Scholar 

  79. Kuperman DA, Huang X, Koth LL, Chang GH, Dolganov GM, Zhu Z. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat Med. 2002;8:885–9.

    CAS  PubMed  Google Scholar 

  80. Atherton HC, Jones G, Danahay H. IL-13-induced changes in the goblet cell density of human bronchial epithelial cell cultures: MAP kinase and phosphatidylinositol 3- kinase regulation. Am J Physiol Lung Cell Mol Physiol. 2003;285:730–9.

    Google Scholar 

  81. Finkelman FD, Yang M, Perkins C, Schleifer K, Sproles A, Santeliz J. Suppressive effect of IL-4 on IL-13-induced genes in mouse lung. J Immunol. 2005;174:4630–8.

    CAS  PubMed  Google Scholar 

  82. Ramalingam TR, Pesce JT, Sheikh F, Cheever AW, Mentink-Kane MM, Wilson MS. Unique functions of the type II interleukin 4 receptor identified in mice lacking the interleukin 13 receptor alpha1 chain. Nat Immunol. 2008;9:25–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Cohn L, Elias JA, Chupp GL. Asthma: mechanisms of disease persistence and progression. Ann Rev Immunol. 2004;22:789–815.

    CAS  Google Scholar 

  84. Hohlfeld JM, Erpenbeck VJ, Krug N. Surfactant proteins SP-A and SP-D as modulators of the allergic inflammation in asthma. Pathobiology. 2002;70:287–92.

    CAS  PubMed  Google Scholar 

  85. Aman MJ, Tayebi N, Obiri NI, et al. cDNA cloning and characterization of the human interleukin 13 receptor αchain. J Biol Chem. 1996;271:29265–70.

    CAS  PubMed  Google Scholar 

  86. Miloux B, Laurent P, Bonnin O, et al. Cloning of the human IL-13Rα1 chain and reconstitution with the IL4Rα of a functional IL-4/IL-13 receptor complex. FEBS Lett. 1997;401:163–6.

    CAS  PubMed  Google Scholar 

  87. Donaldson DD, Whitters MJ, Fitz LJ. The murine IL-13 receptor α2: molecular cloning, characterization, and comparison with murine IL-13 receptor α1. J Immunol. 1998;161:2317–24.

    CAS  PubMed  Google Scholar 

  88. Homer RJ, Zheng T, Chupp G, He S, Zhu Z, Chen Q, Ma B, Hite RD, Gobran LI, Rooney SA, Elias JA. Pulmonary type II cell hypertrophy and pulmonary lipoproteinosis are features of chronic IL-13 exposure. Am J Physiol Lung Cell Mol Physiol. 2002;283:52–9.

    Google Scholar 

  89. Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, Zhang Y, Elias JA. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest. 1999;103:779–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Zhou M, Ouyang W. The function role of GATA-3 in Th1 and Th2 Differentiation. Immunol Res. 2003;28:25–37.

    CAS  PubMed  Google Scholar 

  91. Chou J, Provot S, Werb Z. GATA3 in development and cancer differentiation: cells GATA have it. J Cell Physiol. 2010;222:42–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Rothenberg EV, Moore JE, Yui MA. Launching the T-cell lineage developmental programme. Nat Rev Immunol. 2008;8:9–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Ho IC, Tai TS, Pai SY. GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat Rev Immunol. 2009;9:125–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Ansel KM, Djuretic I, Tanasa B, Rao A. Regulation of Th2 differentiation and IL-4 locus accessibility. Ann Rev Immunol. 2006;24:607–56.

    CAS  Google Scholar 

  95. Nakayama T, Yamashita M. Initiation and maintenance of Th2 cell identity. Curr Opin Immunol. 2008;20:265–71.

    CAS  PubMed  Google Scholar 

  96. Kishikawa H, Sun J, Choi A, Miaw SC, Ho IC. The cell type specific expression of the murine IL-13 gene is regulated by GATA-3. J Immunol. 2001;167:4414–20.

    CAS  PubMed  Google Scholar 

  97. Maurice D, Hooper J, Lang G, Weston K. c-Myb regulates lineage choice in developing thymocytes via its target gene Gata3. EMBO J. 2007;26:3629–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Pai SY. Distinct structural requirements of GATA-3 for the regulation of thymocyte and Th2 cell differentiation. J Immunol. 2008;180:1050–9.

    CAS  PubMed  Google Scholar 

  99. Zhao X. Interaction between GATA-3 and the transcriptional co regulator Pias1 is important for the regulation of Th2 immune responses. J Immunol. 2007;179:8297–304.

    CAS  PubMed  Google Scholar 

  100. Zurawski G, de Vries JE. Interleukin 13, an interleukin-4 like cytokine that acts on monocytes and B cells, but not on T cells. Immunol Today. 1994;15:19–26.

    CAS  PubMed  Google Scholar 

  101. Woerly G, Lacy P, Younes AB. Human eosinophils express and release IL-13 following CD28-dependent activation. Jour Leukoc Biol. 2002;72:769–79.

    CAS  Google Scholar 

  102. Akbari O, Stock P, Meyer E. Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat Med. 2003;9:582–8.

    CAS  PubMed  Google Scholar 

  103. Guo L, Wei G, Zhu J, Liao W, Leonard WL, Zhao K, Paul W. IL-1 family members and STAT activators induce cytokine production by Th2, Th17, and Th1 cells. PNAS. 2009;106:13463–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Chang YJ, Kim HY, Albacker LA, et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat Immunol. 2011;12:631–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Mjosberg JM, Trifari S, Crellin NK, et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol. 2011;12:1055–62.

    PubMed  Google Scholar 

  106. Klein-Wolterink RG, Serafini N, van Nimwegen M, et al. Essential, dose-dependent role for the transcription factor Gata3 in the development of IL-5+ and IL-13+ type 2 innate lymphoid cells. Proc Natl Acad Sci USA. 2013;110:10240–1025.

    PubMed Central  PubMed  Google Scholar 

  107. Zhang DH, Yang L, Cohn L. Inhibition of allergic inflammation in a murine model of asthma by expression of a dominant negative mutant of GATA-3. Immunity. 1999;11:473–82.

    CAS  PubMed  Google Scholar 

  108. Takemoto N, Kamogawa Y, Jun-Lee H, Kurata H, Arai KI. A O’Garra, N Arai, S Miyatake, Chromatin remodeling at the IL-4/IL-13 intergenic regulatory region for Th2-specific cytokine gene cluster. J Immunol. 2000;165:6687–91.

    CAS  PubMed  Google Scholar 

  109. Lee HJ, Takemoto N, Kurata HY, et al. GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Th1 cells. J Exp Med. 2000;192:105–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Cecile LB, Cecelia DT, Iman M, Paul-Henri R, Max-Audit I. Interleukin-13 gene expression is regulated by gata-3 in T cells. J Biol Chem. 2002;277:18313–21.

    Google Scholar 

  111. Zhang DH, Yang L, Ray A. Differential responsiveness of the IL-5 and IL-4 genes to transcription factor GATA-3. J Immunol. 1998;161:3817–21.

    CAS  PubMed  Google Scholar 

  112. Yamashita M, Ukai-Tadenuma M, Kimura M. Identification of a conserved GATA3 response element upstream proximal from the interleukin-13 gene locus. J Biol Chem. 2002;277:42399–408.

    CAS  PubMed  Google Scholar 

  113. Maneechotesuwan K, Xin Y, Ito K, et al. Regulation of Th2 cytokine genes by p38 MAPK-mediated phosphorylation of GATA-3. J Immunol. 2007;178:2491–8.

    CAS  PubMed  Google Scholar 

  114. Nakamura Y, Hoshino M. Th2 cytokines and associated transcription factors as therapeutic targets in asthma. Curr Drug Targets Inflamm Allergy. 2005;4:267–70.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurdarshan Singh.

Additional information

Responsible Editor: Bernhard Gibbs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rayees, S., Malik, F., Bukhari, S.I. et al. Linking GATA-3 and interleukin-13: implications in asthma. Inflamm. Res. 63, 255–265 (2014). https://doi.org/10.1007/s00011-013-0700-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-013-0700-6

Keywords

Navigation