Skip to main content
Log in

On \(\varvec{n}\)-norm preservers and the Aleksandrov conservative \(\varvec{n}\)-distance problem

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

The goal of this paper is to point out that the results obtained in the recent papers (Chen and Song in Nonlinear Anal 72:1895–1901, 2010; Chu in J Math Anal Appl 327:1041–1045, 2007; Chu et al. in Nonlinear Anal 59:1001–1011, 2004a, J. Math Anal Appl 289:666–672, 2004b) can be seriously strengthened in the sense that we can significantly relax the assumptions of the main results so that we still get the same conclusions. In order to do this first, we prove that for \(n \ge 3\) any transformation which preserves the n-norm of any n vectors is automatically plus-minus linear. This will give a re-proof of the well-known Mazur–Ulam-type result that every n-isometry is automatically affine (\(n \ge 2\)) which was proven in several papers, e.g. in Chu et al. (Nonlinear Anal 70:1068–1074, 2009). Second, following the work of Rassias and Šemrl (Proc Am Math Soc 118:919–925, 1993), we provide the solution of a natural Aleksandrov-type problem in n-normed spaces, namely, we show that every surjective transformation which preserves the unit n-distance in both directions (\(n\ge 2\)) is automatically an n-isometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleksandrov, A.D.: Mappings of families of sets. Sov. Math. Dokl. 11, 116–120 (1970)

    MATH  Google Scholar 

  2. Beckman, F.S., Quarles, D.A.: On isometries of Euclidean spaces. Proc. Am. Math. Soc. 4, 810–815 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benz, W.: An elementary proof of the theorem of Beckman and Quarles. Elem. Math. 42, 4–9 (1987)

    MathSciNet  MATH  Google Scholar 

  4. Benz, W.: Real Geometries. Bibliographisches Institut, Mannheim (1994)

    MATH  Google Scholar 

  5. Benz, W., Berens, H.: A contribution to a theorem of Ulam and Mazur. Aequ. Math. 34, 61–63 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carter, D.S., Vogt, A.: Collinearity-preserving functions between Desarguesian planes. Mem. Am. Math. Soc. 27, 1–98 (1980)

    MathSciNet  MATH  Google Scholar 

  7. Chen, X.Y., Song, M.M.: Characterizations on isometries in linear \(n\)-normed spaces. Nonlinear Anal. 72, 1895–1901 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chu, H.Y.: On the Mazur-Ulam problem in linear 2-normed spaces. J. Math. Anal. Appl. 327, 1041–1045 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chu, H.Y., Choi, S.K., Kang, D.S.: Mappings of conservative distances in linear \(n\)-normed spaces. Nonlinear Anal. 70, 1068–1074 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chu, H.Y., Lee, K.H., Park, C.K.: On the Aleksandrov problem in linear n-normed spaces. Nonlinear Anal. 59, 1001–1011 (2004a)

  11. Chu, H.Y., Park, C.G., Park, W.G.: The Aleksandrov problem in linear 2-normed spaces. J. Math. Anal. Appl. 289, 666–672 (2004b)

  12. Dekster, B.V.: Nonisometric distance 1 preserving mapping \(E^2\rightarrow E^6\). Arch. Math. (Basel) 45, 282–283 (1985)

    Article  MathSciNet  Google Scholar 

  13. Diminnie, C., Gähler, S., White, A.: Strictly convex linear 2-normed spaces. Math. Nachr. 59, 319–324 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. Faure, C.-A.: An elementary proof of the fundamental theorem of projective geometry. Geom. Dedic. 90, 145–151 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gähler, S.: Lineare 2-normierte Räume. Math. Nachr. 28, 1–43 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gehér, Gy P.: A contribution to the Aleksandrov conservative distance problem in two dimensions. Linear Algebra Appl. 481, 280–287 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gehér, Gy P.: Maps on real Hilbert spaces preserving the area of parallelograms and a preserver problem on self-adjoint operators. J. Math. Anal. Appl 422, 1402–1413 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, W.-L., Šemrl, P.: The optimal version of Hua’s fundamental theorem of geometry of square matrices-the low dimensional case. Linear Algebra Appl 498, 21–57 (2016). doi:10.1016/j.laa.2014.08.014

    Article  MathSciNet  MATH  Google Scholar 

  19. Juhász, R.: Another proof of the Beckman-Quarles theorem. Adv. Geom. 15, 519–521 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lester, J.A.: Euclidean plane point-transformations preserving unit area or unit perimeter. Arch. Math. 45, 561–564 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lester, J.A.: Martin’s theorem for Euclidean n-space and a generalization to the perimeter case. J. Geom. 27, 29–35 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Misiak, A.: \(n\)-inner product spaces. Math. Nachr. 140, 299–319 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rassias, T.M., Šemrl, P.: On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mappings. Proc. Am. Math. Soc. 118, 919–925 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schaeffer, H.: Über eine Verallgemeinerung des Fundamentalsatzes in desarguesschen affinen Ebenen, Techn. Univ. München TUM-M8010

  25. Tyszka, A.: A discrete form of the Beckman-Quarles theorem for two-dimensional strictly convex normed spaces. Nonlinear Funct. Anal. Appl. 7, 353–360 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Pál Gehér.

Additional information

The author was also supported by the “Lendület” Program (LP2012-46/2012) of the Hungarian Academy of Sciences and by the Hungarian National Research, Development and Innovation Office – NKFIH (Grant No. K115383).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gehér, G.P. On \(\varvec{n}\)-norm preservers and the Aleksandrov conservative \(\varvec{n}\)-distance problem. Aequat. Math. 91, 933–943 (2017). https://doi.org/10.1007/s00010-017-0478-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-017-0478-7

Keywords

Mathematics Subject Classification

Navigation