Skip to main content
Log in

TeV scale mirage mediation in NMSSM

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the next-to-minimal supersymmetric standard model. We consider soft supersymmetry breaking parameters, which are induced by the mirage mediation mechanism of supersymmetry breaking. We concentrate on the mirage mediation, where the so-called mirage scale is the TeV scale. In this scenario, we can realize the up-type Higgs soft mass of \( \mathcal{O}\left( {200} \right) \) GeV, while other masses such as gaugino masses and stop masses are heavy such as 1 TeV or more. Cancellation between the effective μ-term and the down-type Higgs soft mass ameliorates the fine-tuning in the electroweak symmetry breaking even for \( \mu =\mathcal{O}\left( {500} \right) \) GeV. The mixingbetween the doublet and singlet Higgsbosons issuppressed by (κ/λ) tan−1 β. Then the lightest doublet Higgs mass naturally reaches 125 GeV lifted by the new quartic coupling. The higgsino and singlino are light and their linear combination is the lightest superparticle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. K. Choi, A. Falkowski, H.P. Nilles, M. Olechowski and S. Pokorski, Stability of flux compactifications and the pattern of supersymmetry breaking, JHEP 11 (2004) 076 [hep-th/0411066] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. K. Choi, A. Falkowski, H.P. Nilles and M. Olechowski, Soft supersymmetry breaking in KKLT flux compactification, Nucl. Phys. B 718 (2005) 113 [hep-th/0503216] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. K. Choi, K.S. Jeong and K.-I. Okumura, Phenomenology of mixed modulus-anomaly mediation in fluxed string compactifications and brane models, JHEP 09 (2005) 039 [hep-ph/0504037] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. M. Endo, M. Yamaguchi and K. Yoshioka, A bottom-up approach to moduli dynamics in heavy gravitino scenario: superpotential, soft terms and sparticle mass spectrum, Phys. Rev. D 72 (2005) 015004 [hep-ph/0504036] [INSPIRE].

    ADS  Google Scholar 

  7. V.S. Kaplunovsky and J. Louis, Model independent analysis of soft terms in effective supergravity and in string theory, Phys. Lett. B 306 (1993) 269 [hep-th/9303040] [INSPIRE].

    ADS  Google Scholar 

  8. A. Brignole, L.E. Ibáñez and C. Muñoz, Towards a theory of soft terms for the supersymmetric standard model, Nucl. Phys. B 422 (1994) 125 [Erratum ibid. B 436 (1995) 747] [hep-ph/9308271] [INSPIRE].

  9. T. Kobayashi, D. Suematsu, K. Yamada and Y. Yamagishi, Nonuniversal soft scalar masses in superstring theories, Phys. Lett. B 348 (1995) 402 [hep-ph/9408322] [INSPIRE].

    ADS  Google Scholar 

  10. L.E. Ibáñez, C. Muñoz and S. Rigolin, Aspect of type-I string phenomenology, Nucl. Phys. B 553 (1999) 43 [hep-ph/9812397] [INSPIRE].

    Article  ADS  Google Scholar 

  11. L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].

    Article  ADS  Google Scholar 

  13. K. Choi, K.S. Jeong, T. Kobayashi and K.-i. Okumura, Little SUSY hierarchy in mixed modulus-anomaly mediation, Phys. Lett. B 633 (2006) 355 [hep-ph/0508029] [INSPIRE].

    ADS  Google Scholar 

  14. R. Kitano and Y. Nomura, A solution to the supersymmetric fine-tuning problem within the MSSM, Phys. Lett. B 631 (2005) 58 [hep-ph/0509039] [INSPIRE].

    ADS  Google Scholar 

  15. K. Choi, K.S. Jeong, T. Kobayashi and K.-i. Okumura, TeV scale mirage mediation and natural little SUSY hierarchy, Phys. Rev. D 75 (2007) 095012 [hep-ph/0612258] [INSPIRE].

    ADS  Google Scholar 

  16. A. Falkowski, O. Lebedev and Y. Mambrini, SUSY phenomenology of KKLT flux compactifications, JHEP 11 (2005) 034 [hep-ph/0507110] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. H. Baer, E.-K. Park, X. Tata and T.T. Wang, Collider and dark matter searches in models with mixed modulus-anomaly mediated SUSY breaking, JHEP 08 (2006) 041 [hep-ph/0604253] [INSPIRE].

    ADS  Google Scholar 

  18. H. Baer, E.-K. Park, X. Tata and T.T. Wang, Collider and dark matter phenomenology of models with mirage unification, JHEP 06 (2007) 033 [hep-ph/0703024] [INSPIRE].

    Article  ADS  Google Scholar 

  19. R. Kitano and Y. Nomura, Supersymmetry, naturalness and signatures at the LHC, Phys. Rev. D 73 (2006) 095004 [hep-ph/0602096] [INSPIRE].

    ADS  Google Scholar 

  20. K. Kawagoe and M.M. Nojiri, Discovery of supersymmetry with degenerated mass spectrum, Phys. Rev. D 74 (2006) 115011 [hep-ph/0606104] [INSPIRE].

    ADS  Google Scholar 

  21. H. Abe, Y.G. Kim, T. Kobayashi and Y. Shimizu, TeV scale partial mirage unification and neutralino dark matter, JHEP 09 (2007) 107 [arXiv:0706.4349] [INSPIRE].

    Article  ADS  Google Scholar 

  22. P. Fayet, Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino, Nucl. Phys. B 90 (1975) 104 [INSPIRE].

    Article  ADS  Google Scholar 

  23. P. Fayet, Supersymmetry and weak, electromagnetic and strong interactions, Phys. Lett. B 64 (1976) 159 [INSPIRE].

    ADS  Google Scholar 

  24. P. Fayet, Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions, Phys. Lett. B 69 (1977) 489 [INSPIRE].

    ADS  Google Scholar 

  25. P. Fayet, Relations between the masses of the superpartners of leptons and quarks, the goldstino couplings and the neutral currents, Phys. Lett. B 84 (1979) 416 [INSPIRE].

    ADS  Google Scholar 

  26. H.P. Nilles, M. Srednicki and D. Wyler, Weak interaction breakdown induced by supergravity, Phys. Lett. B 120 (1983) 346 [INSPIRE].

    ADS  Google Scholar 

  27. J.M. Frere, D.R.T. Jones and S. Raby, Fermion masses and induction of the weak scale by supergravity, Nucl. Phys. B 222 (1983) 11 [INSPIRE].

    Article  ADS  Google Scholar 

  28. J.P. Derendinger and C.A. Savoy, Quantum effects and SU(2) × U(1) breaking in supergravity gauge theories, Nucl. Phys. B 237 (1984) 307 [INSPIRE].

    Article  ADS  Google Scholar 

  29. J.R. Ellis, J.F. Gunion, H.E. Haber, L. Roszkowski and F. Zwirner, Higgs bosons in a nonminimal supersymmetric model, Phys. Rev. D 39 (1989) 844 [INSPIRE].

    ADS  Google Scholar 

  30. M. Drees, Supersymmetric models with extended Higgs sector, Int. J. Mod. Phys. A 4 (1989) 3635 [INSPIRE].

    ADS  Google Scholar 

  31. U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. J.E. Kim and H.P. Nilles, The μ problem and the strong CP problem, Phys. Lett. B 138 (1984) 150 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. H. Abe, T. Higaki and T. Kobayashi, KKLT type models with moduli-mixing superpotential, Phys. Rev. D 73 (2006) 046005 [hep-th/0511160] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. K. Choi, K.S. Jeong and K.-i. Okumura, Flavor and CP conserving moduli mediated SUSY breaking in flux compactification, JHEP 07 (2008) 047 [arXiv:0804.4283] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. O. Lebedev, H.P. Nilles and M. Ratz, A note on fine-tuning in mirage mediation, hep-ph/0511320 [INSPIRE].

  36. A. Riotto and E. Roulet, Vacuum decay along supersymmetric flat directions, Phys. Lett. B 377 (1996) 60 [hep-ph/9512401] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  37. A. Kusenko, P. Langacker and G. Segre, Phase transitions and vacuum tunneling into charge and color breaking minima in the MSSM, Phys. Rev. D 54 (1996) 5824 [hep-ph/9602414] [INSPIRE].

    ADS  Google Scholar 

  38. A. Kusenko and P. Langacker, Is the vacuum stable?, Phys. Lett. B 391 (1997) 29 [hep-ph/9608340] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. Y. Kanehata, T. Kobayashi, Y. Konishi, O. Seto and T. Shimomura, Constraints from unrealistic vacua in the next-to-minimal supersymmetric standard model, Prog. Theor. Phys. 126 (2011) 1051 [arXiv:1103.5109] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  40. T. Kobayashi, T. Shimomura and T. Takahashi, Constraining the Higgs sector from false vacua in the next-to-minimal supersymmetric standard model, Phys. Rev. D 86 (2012) 015029 [arXiv:1203.4328] [INSPIRE].

    ADS  Google Scholar 

  41. U. Ellwanger and C. Hugonie, NMHDECAY 2.0: an updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun. 175 (2006) 290 [hep-ph/0508022] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  42. G. Bélanger, F. Boudjema, C. Hugonie, A. Pukhov and A. Semenov, Relic density of dark matter in the NMSSM, JCAP 09 (2005) 001 [hep-ph/0505142] [INSPIRE].

    Article  Google Scholar 

  43. U. Ellwanger, J.F. Gunion and C. Hugonie, NMHDECAY: a Fortran code for the Higgs masses, couplings and decay widths in the NMSSM, JHEP 02 (2005) 066 [hep-ph/0406215] [INSPIRE].

    Article  ADS  Google Scholar 

  44. G. Bélanger et al., Higgs bosons at 98 and 125 GeV at LEP and the LHC, arXiv:1210.1976 [INSPIRE].

  45. U. Ellwanger, Higgs bosons in the next-to-minimal supersymmetric standard model at the LHC, Eur. Phys. J. C 71 (2011) 1782 [arXiv:1108.0157] [INSPIRE].

    Article  ADS  Google Scholar 

  46. S.F. King, M. Muhlleitner and R. Nevzorov, NMSSM Higgs benchmarks near 125 GeV, Nucl. Phys. B 860 (2012) 207 [arXiv:1201.2671] [INSPIRE].

    Article  ADS  Google Scholar 

  47. D.A. Vasquez et al., The 125 GeV Higgs in the NMSSM in light of LHC results and astrophysics constraints, Phys. Rev. D 86 (2012) 035023 [arXiv:1203.3446] [INSPIRE].

    ADS  Google Scholar 

  48. U. Ellwanger and C. Hugonie, Higgs bosons near 125 GeV in the NMSSM with constraints at the GUT scale, Adv. High Energy Phys. 2012 (2012) 625389 [arXiv:1203.5048] [INSPIRE].

    Google Scholar 

  49. G. Bélanger, F. Boudjema, C. Hugonie, A. Pukhov and A. Semenov, Relic density of dark matter in the NMSSM, JCAP 09 (2005) 001 [hep-ph/0505142] [INSPIRE].

    Article  Google Scholar 

  50. D.G. Cerdeno, C. Hugonie, D.E. Lopez-Fogliani, C. Muñoz and A.M. Teixeira, Theoretical predictions for the direct detection of neutralino dark matter in the NMSSM, JHEP 12 (2004) 048 [hep-ph/0408102] [INSPIRE].

    Article  ADS  Google Scholar 

  51. T. Kobayashi, H. Makino, K.-i. Okumura, T. Shimomura and T. Takahashi, work in progress.

  52. M. Asano and T. Higaki, Natural supersymmetric spectrum in mirage mediation, Phys. Rev. D 86 (2012) 035020 [arXiv:1204.0508] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Shimomura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, T., Makino, H., Okumura, Ki. et al. TeV scale mirage mediation in NMSSM. J. High Energ. Phys. 2013, 81 (2013). https://doi.org/10.1007/JHEP01(2013)081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2013)081

Keywords

Navigation