Skip to main content
Log in

The influence of parameter estimation on the ARL of Shewhart type charts for time series

  • Articles
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this paper we discuss the behavior of the Shewhart residual chart and the modified Shewhart chart if the parameters of the underlying process are unknown and thus have to be estimated. We focus on the estimation of the variance. For AR models we also consider the estimation of the AR coefficients. The average run length (ARL) of the control chart with estimated parameters is compared with the ARL of the scheme for known parameters and with the ARL for independent variables. Additionally, we give recommendations on the choice of the estimators in the context of Shewhart control schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alwan, L. C. and Roberts, H. V. (1988). Time-series modeling for statistical process control.Journal of Business and Economic Statistics, 6(1), 87–95.

    Article  Google Scholar 

  • Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (1994).Time Series Analysis-Forecasting and Control, Prentice Hall, Englewood Cliffs.

    MATH  Google Scholar 

  • Brockwell, P. J. and Davis, R. A. (1991).Time Series: Theory and Methods. Springer, New York.

    Google Scholar 

  • Brook, D. and Evans, D. A. (1972). An approach to the probability distributions of CUSUM run length.Biometrika, 59, 3, 539–549.

    Article  MATH  MathSciNet  Google Scholar 

  • Harris, T. J. and Ross, W. H. (1991). Statistical process control procedures for correlated observations.Canadian Journal of Chemical Engineering, 69, 48–57.

    Google Scholar 

  • Kramer, H. G. (1997).On Control Charts for Time Series, Ph.D. thesis, University of Uhn, Germany.

    MATH  Google Scholar 

  • Kramer, H. G. and Schmid, W. (1997). EWMA charts for multivariate time series.Sequential Analysis, 16, 131–154.

    Article  MATH  MathSciNet  Google Scholar 

  • Lucas, J. M. and Saccucci, M. S. (1990). Exponentially weighted moving average control schemes: properties and enhancements.Technometrics, 32(1), 1–29.

    Article  MathSciNet  Google Scholar 

  • Maragah, H. D. and Woodall, W. D. (1992). The effect of autocorrelation on the retrospective X-chart.Journal of Statist. Comput. Simul., 40, 29–42.

    Article  MATH  Google Scholar 

  • Montgomery, D. C. and Mastrangelo, C. M. (1991). Some statistical process control methods for autocorrelated data.Journal of Quality Technology, 23(3), 179–204.

    Google Scholar 

  • Notohardjono, D. and Ermer, D. S. (1986). Time series control charts for correlated and contaminated data.Journal of Engineering for Industry, 108, 219–226.

    Article  Google Scholar 

  • Ryan, T. P. (1991). Discussion of “Some statistical process control methods for autocorrelated data”.Journal of Quality Technology, 23(3), 200–202.

    Google Scholar 

  • Schmid, W. (1995). On the run length of a Shewhart chart for correlated data.Statistical Papers, 36, 111–130.

    MATH  MathSciNet  Google Scholar 

  • Schmid, W. (1997a). On EWMA charts for time series, In:Frontiers in Statistical Quality Control 5, Lenz, H.-J. and Wilrich, P.-Th. (Eds.). Physica-Verlag, Heidelberg, Germany, 115–137.

    Google Scholar 

  • Schmid, W. (1997b). CUSUM control schemes for Gaussian processes.Statistical Papers, 38, 191–217.

    Article  MATH  MathSciNet  Google Scholar 

  • Severin, T. and Schmid, W. (1996). Monitoring changes in GARCH models. Technical Report No. 64, Europe-University Viadrina, Frankfurt (Oder), Germany.

    Google Scholar 

  • Taniguchi, M. (1991).Higher Order Asymptotic Theory for Time Series Analysis. Lecture Notes in Statistics, Vol. 68, Springer, New York.

    MATH  Google Scholar 

  • Tong, Y. L. (1980).Probability Inequalities in Multivariate Distributions. Academic Press, New York.

    MATH  Google Scholar 

  • Tong, Y. L. (1990).The Multivariate Normal Distribution. Springer, New York.

    MATH  Google Scholar 

  • Tseng, S. and Adams, B. M. (1994). Monitoring autocorrelated processes with an exponentially weighted moving average forecast.Journal of Statist. Comput. Simul., 50, 187–195.

    Article  Google Scholar 

  • Vander Wiel, S. A. (1996). Monitoring processes that wander using integrated moving average models.Technometrics, 38(2), 139–151.

    Article  MATH  Google Scholar 

  • Vasilopoulos, A. V. and Stamboulis, A. P. (1978). Modification of control chart limits in the presence of data correlation.Journal of Quality Technology, 10(1), 20–30.

    Google Scholar 

  • Wardell, D. G., Moskowitz, H. and Plante, R. D. (1992). Control charts in the presence of data correlation.Management Science, 38(8), 1084–1105.

    MATH  Google Scholar 

  • Wardell, D. G., Moskowitz, H. and Plante, R. D. (1994). Run-length distributions of special-cause control charts for correlated processes.Technometrics, 36(1), 3–27.

    Article  MATH  MathSciNet  Google Scholar 

  • Yashchin, E. (1993). Performance of CUSUM control schemes for serially correlated observations.Technometrics, 35(1), 35–52.

    Article  MathSciNet  Google Scholar 

  • Holger Kramer and Wolfgang Schmid, Europe University Frankfurt (Oder), Department of Statistics, P.O. Box 776, D-15207 Frankfurt (Oder), Germany.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramer, H., Schmid, W. The influence of parameter estimation on the ARL of Shewhart type charts for time series. Statistical Papers 41, 173–196 (2000). https://doi.org/10.1007/BF02926102

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02926102

Key Words

Navigation