Skip to main content

Challenges in Monitoring Non-stationary Time Series

  • Conference paper
  • First Online:
Frontiers in Statistical Quality Control 12

Part of the book series: Frontiers in Statistical Quality Control ((FSQC))

Abstract

Different approaches for monitoring non-stationary processes are discussed. Besides the transformation method, a more general procedure is described which makes use of the probability structure of the underlying in-control process. Here, the in-control process is assumed to be a multivariate state-space process. The out-of-control state is described by a general change point model which covers shifts and drifts in the components. Control charts with a reference vector are derived using the likelihood ratio, the sequential probability ratio, and the Shiryaev–Roberts approach. Moreover, the generalized likelihood ratio, the generalized sequential probability ratio, and the generalized modified Shiryaev–Roberts approach are used to obtain charts without reference parameters. All the introduced schemes are compared with each other assuming that a univariate unit root process with drift is present. We make use of several measures of the performance of control charts, such as the average run length, the worst average delay, and the limit average delay. This chapter also analyses how the charts with a reference parameter depend on the choice of this quantity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alwan, L. C., & Roberts, H. V. (1988). Time-series modeling for statistical process control. Journal of Business & Economic Statistics, 6(1), 87–95.

    Google Scholar 

  • Brockwell, P. J., & Davis, R. A. (2009). Time Series: Theory and Methods. Berlin: Springer.

    MATH  Google Scholar 

  • Chou, C. J. (2004). Groundwater monitoring: Statistical methods for testing special background conditions. In: G. B. Wiersma (Ed.), Environmental Monitoring. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Durbin, J., & Koopman, S. J. (2012). Time Series Analysis by State Space Methods. Oxford: Oxford University Press.

    Book  Google Scholar 

  • FrisĂ©n, M. (2008). Financial Surveillance (Vol. 71). Hoboken, NJ: John Wiley & Sons.

    MATH  Google Scholar 

  • Hayashi, F. (2000). Econometrics. Princeton, NJ: Princeton University Press.

    MATH  Google Scholar 

  • Kass-Hout, T., & Zhang, X. (2010). Biosurveillance: Methods and Case Studies. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  • Koopman, S. J. (1997). Exact initial Kalman filtering and smoothing for nonstationary time series models. Journal of the American Statistical Association, 92(440), 1630–1638.

    Article  MathSciNet  Google Scholar 

  • Lazariv, T., & Schmid, W. (2015). Surveillance of non-stationary processes Discussion Paper

    Google Scholar 

  • Lazariv, T., Schmid, W., & Zabolotska, S. (2013). On control charts for monitoring the variance of a time series. Journal of Statistical Planning and Inference, 143(9), 1512–1526.

    Article  MathSciNet  Google Scholar 

  • Lu, C. W., & Reynolds, M. (1999). Control charts for monitoring the mean and variance of autocorrelated processes. Journal of Quality Technology, 31(3), 259–274

    Article  Google Scholar 

  • Montgomery, D. C. (2009). Introduction to Statistical Quality Control (6th ed.). Hoboken, NJ: John Wiley & Sons.

    MATH  Google Scholar 

  • Nikiforov, I. (1975). Sequential analysis applied to autoregression processes. Automation and Remote Control, 36, 1365–1368

    MATH  Google Scholar 

  • Page, E. (1954). Continuous inspection schemes. Biometrika, 41, 100–115.

    Article  MathSciNet  Google Scholar 

  • Resnick, S. I. (2007). Extreme Values, Regular Variation, and Point Processes. Berlin: Springer.

    MATH  Google Scholar 

  • Roberts, S. (1966). A comparison of some control chart procedures. Technometrics, 8(3), 411–430.

    Article  MathSciNet  Google Scholar 

  • Ruppert, D. (2004). Statistics and Finance: An Introduction. Berlin: Springer.

    Book  Google Scholar 

  • Schmid, W. (1995). On the run length of a Shewhart chart for correlated data. Statistical Papers, 36(1), 111–130.

    Article  MathSciNet  Google Scholar 

  • Schmid, W. (1997a). CUSUM control schemes for Gaussian processes. Statistical Papers, 38(2), 191–217

    Article  MathSciNet  Google Scholar 

  • Schmid, W. (1997b). On EWMA charts for time series. In Frontiers in Statistical Quality Control (Vol. 5, pp. 115–137). Berlin: Springer.

    Chapter  Google Scholar 

  • Schmid, W., & Steland, A. (2000). Sequential control of non-stationary processes by nonparametric kernel control charts. Allgemeines Statistisches Archiv (Journal of the German Statistical Association), 84, 315–336.

    Article  MathSciNet  Google Scholar 

  • Shiryaev, A. N. (1963). On optimum methods in quickest detection problems. Theory of Probability & Its Applications, 8(1), 22–46.

    Article  MathSciNet  Google Scholar 

  • Steland, A. (2002). Nonparametric monitoring of financial time series by jump-preserving estimators. Statistical Papers, 43, 361–377

    Article  MathSciNet  Google Scholar 

  • Steland, A. (2005). Random walks with drift – a sequential approach. Journal of Time Series Analysis, 26(6), 917–942.

    Article  MathSciNet  Google Scholar 

  • Steland, A. (2007). Monitoring procedures to detect unit roots and stationarity. Econometric Theory, 23(06), 1108–1135.

    Article  MathSciNet  Google Scholar 

  • Steland, A. (2010). A surveillance procedure for random walks based on local linear estimation. Journal of Nonparametric Statistics, 22(3), 345–361.

    Article  MathSciNet  Google Scholar 

  • Triantafyllopoulos, K., & Bersimis, S. (2016). Phase II control charts for autocorrelated processes. Quality Technology & Quantitative Management, 13(1), 88–108.

    Article  Google Scholar 

  • Wald, A. (1947). Sequential Analysis. New York: Wiley.

    MATH  Google Scholar 

  • Wardell, D. G., Moskowitz, H., & Plante, R. D. (1994a) Run-length distributions of residual control charts for autocorrelated processes. Journal of Quality Technology, 26(4), 308–317.

    Article  Google Scholar 

  • Wardell, D. G., Moskowitz, H., & Plante, R. D. (1994b). Run-length distributions of special-cause control charts for correlated processes. Technometrics, 36(1), 3–17.

    Article  MathSciNet  Google Scholar 

  • Yashchin, E. (1993). Performance of CUSUM control schemes for serially correlated observations. Technometrics, 35(1), 37–52.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Schmid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lazariv, T., Schmid, W. (2018). Challenges in Monitoring Non-stationary Time Series. In: Knoth, S., Schmid, W. (eds) Frontiers in Statistical Quality Control 12. Frontiers in Statistical Quality Control. Springer, Cham. https://doi.org/10.1007/978-3-319-75295-2_14

Download citation

Publish with us

Policies and ethics