Skip to main content
Log in

Differentiation of reptilian neural crest cells in Vitro

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

An attempt was made to culture neural crest cells of the turtle embryo in vitro. Trunk neural tubes from the St. 9/10 embryos were explanted in culture dishes. The developmental potency of the turtle neural crest cells in vitro was shown to be essentially similar to that of avian neural crest cells, although they seem to be more sensitive to melanocyte-stimulating hormone (MSH) stimulation. We describe conditions under which explanted neural tube gives rise to neural crest cells that differentiate into neuronal cells and melanocytes. The potency of melanocyte differentiation was, found to vary according to the concentration of fetal bovine serum (FBS, from 5 to 20%). Melanization of neural crest cells cultured in the medium containing FBS and α-MSH was more extensive than those cultured with FBS alone, combinations of FBS and chick embryo extract, or turtle embryo extract. These culture conditions seem to be useful for the study of the developmental potency of the neural crest cells as well as for investigating local environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agamy, E.; Hornby, J. E. Pigment promoting factor for mouse neural crest cells. Pigment Cell Res. 1:272; 1988.

    Google Scholar 

  • Bagnara, J. T. The neural crest as a source of stem cell. In: Maderson, P. F. A., ed. Developmental and evolutionary aspects of the neural crest. London: J. Wiley & Sons; 1987:57–87.

    Google Scholar 

  • Campbell, M. Melanogenesis of avian neural crest cell in vitro is influenced by external cues in the periorbital mesenchyme. Development 66:717–726; 1989.

    Google Scholar 

  • Chen, S.; Tchen, T. T.; Taylor, J. D. The role of c-AMP in hormone (MSH or ACTH)-induced melanocyte development in organ cultures of cauda fines of xanthic goldfish. In: Riley, V., ed. Pigment cell. Basel: Karger; 1973:1–5.

    Google Scholar 

  • Ciment, G. The melanocyte/Schwann cell progenitor: a bipotent intermediate in the neural crest lineage. Comments Dev. Neurobiol. 1:207–223; 1990.

    Google Scholar 

  • Clark, H. F.; Cohen, M. M.; Karzon, D. T. Characterization of reptilian cell lines established at incubation temperatures of 23°-36° C. Proc. Soc. Exp. Biol. Med. 33:1039–1047; 1970.

    Google Scholar 

  • Cohen, A. M.; Konigsberg, I. R. A clonal approach to the problem of neural crest determination. Dev. Biol. 46:262–280; 1975.

    Article  PubMed  CAS  Google Scholar 

  • Derby, M. A. Environmental factors affecting neural crest differentiation: melanocyte differentiation by crest cell exposed to cell-free (deoxycholate-extracted) dermal mesenchyme matrix. Cell Tissue Res. 225:379–383; 1982.

    PubMed  CAS  Google Scholar 

  • Durker, H. R. The neural crest. In: Bagnara, J. T.; Klaus, S.; Paul, E., et al., eds. Tokyo: University of Tokyo Press; 1985:255–267.

    Google Scholar 

  • Epperlein, H. H.; Löfberg, J. Xanthophores in chromatophore groups of the premigratory crest initiate the pigment pattern of the axolotl larva. Wilhelm Roux’s Arch. Dev. Biol. 193:357–369; 1984.

    Article  Google Scholar 

  • Ferguson, M. W. J.; Honig, L. S.; Bringnas, P., et al. Alligator mandibular development during long-term organ culture. In Vitro 19:385–393;1983.

    Article  Google Scholar 

  • Fukuzawa, T.; Bagnara, J. T. Control of melanoblasts differentiation in amphibia by α-melanocyte stimulating hormone, a serum melanization factor, and a melanization inhibiting factor. Pigment Cell Res. 2:171–181; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Glimelius, B.; Weston, J. A. Analysis of developmentally homogeneous neural crest cell populations in vitro. III. Role of culture environment in cluster formation and differentiation. Cell Differ. 10:57–67; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, S. Aging in vitro. Growth of cultured cells from the galapagos tortoise. Exp. Cell. Res. 83:297–302; 1981.

    Article  Google Scholar 

  • Hall, B. K. Tissue interaction in the development and evolution of the vertebrate head. In: Madenson, P. F. A., ed. Development and evolutionary aspects of the neural crest. New York:John Wiley & Sons; 1987:215–259.

    Google Scholar 

  • Hall, B. K. The neural crest. London: Oxford University Press; 1988.

    Google Scholar 

  • Hou, L. Acquirement and use of the turtle embryos for experimental purposes. J. Zool. 4:39–40; 1986.

    Google Scholar 

  • Hou, L. Studies on the embryonic development of the turtle, Trionyx sinensis. Natl. Sci. J. Hunan Normal Univ. 2:59–64; 1984.

    Google Scholar 

  • Hou, L. Cytogenesis of the primordial germ cells in the embryos of the turtle. Acta Herpertol Sin. 6:5–10; 1987a.

    Google Scholar 

  • Hou, L. Effect of incubation temperature on sexual differentiation of two turtles. J. Hunan Sci. Technol. Univ. 3:71–76; 1987b.

    Google Scholar 

  • Hou, L.; Takeuchi, T. Differentiation of extracutaneous melanocytes in embryos of the turtle (Trionyx sinensis japonicus). Pigment Cell Res. 4:158–162; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Ito, K.; Takeuchi, T. The differentiation in vitro of the neural crest cells of the mouse embryo. J. Embryol. Exp. Morphol. 84:49–62; 1984.

    PubMed  CAS  Google Scholar 

  • Le Douarin, N. The neural crest. England: Cambridge University Press; 1982.

    Google Scholar 

  • Loring, J.; Glimelius, B.; Ericson, C., et al. Analysis of developmentally homogeneous neural crest cell population in vitro. I. Formation, morphology, and differentiation behavior. Dev. Biol. 82:86–94; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Loring, J.; Glimelius, B.; Weston, J. A. Extracellular matrix materials influence quail neural crest cell differentiation in vitro. Dev. Biol. 90:165–174; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Morrison-Graham, K.; West-Johnsrud, L.; Weston, J. A. Extracellular matrix from normal but not Steel mutant mice enhances melanogenesis in cultured mouse neural crest cells. Dev. Biol. 139:299–307; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Perris, R.; Von Boxberg, Y.; Löfberg, J. Local embryonic matrices determine region-specific phenotypes in neural crest cells. Science 241:86–89; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, S. L.; Bernard, L.; Weston, J. A. Substratum effects on cell dispersal, morphology, and differentiation in culture of avian neural crest cells. Dev. Biol. 141:173–182; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Satoh, M.; Ide, H. Melanocyte stimulating hormone affects melanogenic differentiation of quail neural crest cells in vitro. Dev. Biol. 119:579–586; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Sieber-Blum, M. Commitment of neural crest cells to the sensory neuron lineage. Science 243:1608–1610; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Smith-Thomas, L. C.; Fawcett, J. W. Expression of schwann cell markers by mammalian neural crest cells in vitro. Development 105:251–262; 1989.

    PubMed  CAS  Google Scholar 

  • Takeuchi, T. Gene controlling intercellular communication during melanocyte differentiation in the mouse. Zool. Sci. (Tokyo) 2:823–831; 1985.

    CAS  Google Scholar 

  • Takeuchi, T.; Yamamoto, H. Genetic regulation of melanocyte differentiation. Pigment Cell Res. 1:32–37; 1988.

    Article  Google Scholar 

  • Wahn, H. L.; Taylor, D.; Tchen, T. T. Acceleration of amphibian embryonic melanophore development by melanophore-stimulating hormone, N6, O2-dibutyryl adenosine 3′,5′-monophosphate and theophylline. Dev. Biol. 49:470–478; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Weston, J. A., Phenotypic diversification in neural crest-derived cell: the time and stability of commitment during early development. Curr. Top. Dev. Biol. 20:195–210; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, H.; Ito, K.; Ishiguro, S., et al. Gene controlling a differentiation step in the quail melanocyte. Dev. Genet. 8:179–185; 1987.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, L., Takeuchi, T. Differentiation of reptilian neural crest cells in Vitro. In Vitro Cell Dev Biol - Animal 28, 348–354 (1992). https://doi.org/10.1007/BF02877058

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02877058

Key words

Navigation