Skip to main content

Isolation and Culture of Human Dermal Fibroblasts

  • Protocol
  • First Online:
Skin Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1993))

Abstract

Dermal fibroblasts are the main cell type present in skin connective tissue (dermis). Fibroblasts interact with epidermal cells during hair development and in interfollicular skin. Moreover, they play an essential role during cutaneous wound healing and in bioengineering of skin. Hence, culture of primary fibroblast is gaining in importance. In addition, fibroblasts established from skin biopsies provide a powerful tool for investigating normal skin physiology or specific disease states. In this chapter, detailed procedures for establishing and maintaining primary cultures of adult human dermal fibroblasts are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberts B, Johnson A, Lewis J et al (2002) Fibroblasts and their transformations: the connective-tissue cell family. In: Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  2. Biedermann T, Bottcher-Haberzeth S, Klar AS, Widmer DS, Pontiggia L, Weber AD, Weber DM, Schiestl C, Meuli M, Reichmann E (2015) The influence of stromal cells on the pigmentation of tissue-engineered dermo-epidermal skin grafts. Tissue Eng Part A 21(5–6):960–969

    Article  CAS  Google Scholar 

  3. Klar AS, Biedermann T, Michalak K, Michalczyk T, Meuli-Simmen C, Scherberich A, Meuli M, Reichmann E (2017) Human adipose mesenchymal cells inhibit melanocyte differentiation and the pigmentation of human skin via increased expression of TGF-betal. J Invest Dermatol 137(12):2560–2569

    Article  CAS  Google Scholar 

  4. Yamaguchi Y, Hearing VJ, Itami S, Yoshikawa K, Katayama I (2005) Mesenchymal-epithelial interactions in the skin: aiming for site-specific tissue regeneration. J Dermatol Sci 40(1):1–9

    Article  CAS  Google Scholar 

  5. Driskell RR, Watt FM (2015) Understanding fibroblast heterogeneity in the skin. Trends Cell Biol 25(2):92–99

    Article  CAS  Google Scholar 

  6. Lynch MD, Watt FM (2018) Fibroblast heterogeneity: implications for human disease. J Clin Invest 128(1):26–35

    Article  Google Scholar 

  7. Philippeos C, Telerman SB, Oules B, Pisco AO, Shaw TJ, Elgueta R, Lombardi G, Driskell RR, Soldin M, Lynch MD, Watt FM (2018) Spatial and single-cell transcriptional profiling identifies functionally distinct human dermal fibroblast subpopulations. J Invest Dermatol 138(4):811–825

    Article  CAS  Google Scholar 

  8. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3(5):349–363

    Article  CAS  Google Scholar 

  9. Darby IA, Hewitson TD (2007) Fibroblast differentiation in wound healing and fibrosis. Int Rev Cytol 257:143–179

    Article  CAS  Google Scholar 

  10. Eyden B (2005) The myofibroblast: a study of normal, reactive and neoplastic tissues, with an emphasis on ultrastructure. Part 2—tumours and tumour-like lesions. J Submicrosc Cytol Pathol 37(3–4):231–296

    CAS  Google Scholar 

  11. Gabbiani G (2003) The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 200(4):500–503

    Article  CAS  Google Scholar 

  12. Biedermann T, Boettcher-Haberzeth S, Reichmann E (2013) Tissue engineering of skin for wound coverage. Eur J Pediatr Surg 23(5):375–382

    Article  Google Scholar 

  13. Klar AS, Zimoch J, Biedermann T (2017) Skin tissue engineering: application of adipose-derived stem cells. Biomed Res Int 2017:9747010

    Article  Google Scholar 

  14. Wood FM, Kolybaba ML, Allen P (2006) The use of cultured epithelial autograft in the treatment of major burn injuries: a critical review of the literature. Burns 32(4):395–401

    Article  CAS  Google Scholar 

  15. Braziulis E, Diezi M, Biedermann T, Pontiggia L, Schmucki M, Hartmann-Fritsch F, Luginbuhl J, Schiestl C, Meuli M, Reichmann E (2012) Modified plastic compression of collagen hydrogels provides an ideal matrix for clinically applicable skin substitutes. Tissue Eng Part C Methods 18(6):464–474

    Article  CAS  Google Scholar 

  16. Pontiggia L, Biedermann T, Meuli M, Widmer D, Bottcher-Haberzeth S, Schiestl C, Schneider J, Braziulis E, Montano I, Meuli-Simmen C, Reichmann E (2009) Markers to evaluate the quality and self-renewing potential of engineered human skin substitutes in vitro and after transplantation. J Invest Dermatol 129(2):480–490

    Article  CAS  Google Scholar 

  17. Klar AS, Guven S, Biedermann T, Luginbuhl J, Bottcher-Haberzeth S, Meuli-Simmen C, Meuli M, Martin I, Scherberich A, Reichmann E (2014) Tissue-engineered dermo-epidermal skin grafts prevascularized with adipose-derived cells. Biomaterials 35(19):5065–5078

    Article  CAS  Google Scholar 

  18. Boettcher-Haberzeth S, Klar AS, Biedermann T, Schiestl C, Meuli-Simmen C, Reichmann E, Meuli M (2013) “Trooping the color”: restoring the original donor skin color by addition of melanocytes to bioengineered skin analogs. Pediatr Surg Int 29(3):239–247

    Article  Google Scholar 

  19. Boettcher-Haberzeth S, Biedermann T, Pontiggia L, Braziulis E, Schiestl C, Hendriks B, Eichhoff OM, Widmer DS, Meuli-Simmen C, Meuli M, Reichmann E (2013) Human eccrine sweat gland cells turn into melanin-uptaking keratinocytes in dermo-epidermal skin substitutes. J Invest Dermatol 133(2):316–324

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnes S. Klar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kisiel, M.A., Klar, A.S. (2019). Isolation and Culture of Human Dermal Fibroblasts. In: Böttcher-Haberzeth, S., Biedermann, T. (eds) Skin Tissue Engineering. Methods in Molecular Biology, vol 1993. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9473-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9473-1_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9472-4

  • Online ISBN: 978-1-4939-9473-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics