Skip to main content
Log in

Phylogenetics and character evolution in the grass family (Poaceae): Simultaneous analysis of morphological and Chloroplast DNA restriction site character sets

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

A phylogenetic analysis of the grass family (Poaceae) was conducted using two character sets, one representing variation in 364 mapped and cladistically informative restriction sites from all regions of the chloroplast genome, the other representing variation in 42 informative “structural characters.” The structural character set includes morphological, anatomical, chromosomal, and biochemical features, plus structural features of the chloroplast genome. The taxon sample comprises 75 exemplar taxa, including 72 representatives of Poaceae and one representative of each of three related families (Flagellariaceae, Restionaceae, and Join-villeaceae);Flagellaria served as the outgroup for the purpose of cladogram rooting. Among the grasses, 24 tribes and all 16 subfamilies of grasses recognized by various modern authors were sampled. Transformations of structural characters are mapped onto the phylogenetic hypotheses generated by the analysis, and interpreted with respect to biogeography and the evolution of wind pollination in the grass family. A major goal of the study was to test the monophyly of several putatively natural groups, including Bambusoideae, Pooideae, Arundinoideae, and the “PACC clade” (the latter comprising subfamilies Panicoideae, Arundinoideae, Chloridoideae, and Centothecoideae), as well as to analyze the phylogenetic structure within these groups and others. Several genera of controversial placement (Amphipogon, Anisopogon, Anomochloa, Brachyelytrum, Diarrhena, Eremitis, Ehrharta, Lithachne, Lygeum, Nardus, Olyra, Pharus, andStreptochaeta) also were included, with the goal of determining their phylogenetic affinities. The two character sets were analyzed separately, and a simultaneous analysis of the combined matrices also was conducted. The combined data set also was analyzed using homoplasy-implied weights. Among major results of the combined unweighted analysis were resolution of a sister-group relationship betweenJoinvillea and Poaceae; resolution of a clade comprisingAnomochloa andStreptochaeta as the sister of all other grasses, withPharus the next group to diverge from the lineage that includes all remaining grasses; and resolution of other taxa often assigned to Bambusoideae s.l. (includingEhrharta and Oryzeae, and excluding a few other taxa as noted) as a paraphyletic assemblage, within which is nested a clade that consists ofBrachyelytrum, the PACC clade (includingAmphipogon), and Pooideae (including Brachypodieae, Stipeae,Anisopogon, Diarrhena, Lygeum, andNardus). Within the PACC clade,Aristida is identified as the sister of all other elements of the group; Chloridoideae, Centothecoideae, and Panicoideae are each resolved as monophyletic, the latter two being sister-groups; and the remaining Arundinoid elements constitute a paraphyletic group within which are nested these three subfamilies. Within the Pooideae, four “core tribes” (Bromeae, Hordeeae [i.e., Triticeae], Agrostideae [i.e., Aveneae], andPoeae, the latter includingSesleria) are resolved as a monophyletic group that is nested among the remaining elements of the subfamily (Brachypodieae, Meliceae, Stipeae,Anisopogon, Diarrhena, Lygeum, andNardus). A second principal goal of the analysis was to identify structural synapomorphies of clades. Among the synapomorphies identified for some of the major clades are the following: gain of a 6.4 kb inversion in the chloroplast genome inJoinvillea and the grasses; reduction to 1 ovule per pistil, gain of a lateral “grass-type” embryo, and gain of an inversion around the gene trnT in the chloroplast genome in the grasses; loss of arm cells in the clade that consists ofBrachyelytrum, Pooideae, and the PACC clade; loss of the epiblast and gain of an elongate mesocotyl internode in the PACC clade; gain of proximal female-sterile florets in female-fertile spikelets, gain of overlapping embryonic leaf margins, and gain ofPanicum- type endosperm starch grains in the clade that comprises Centothecoideae and Panicoideae; and loss of the scutellar tail of the embryo in Pooideae (in one of two alternative placements of Pooideae among other groups). These findings are consistent with an origin and early diversification of grasses as forest understory herbs, followed by one or more radiations into open habitats, concomitant with multiple origins of C4 photosynthesis and specialization for wind pollination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Alvarez, L. W., W. Alvarez, F. Asaro &H. V. Michel. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208: 1095–1108.

    Article  PubMed  CAS  Google Scholar 

  • ————. 1982. Current status of the impact theory for the terminal Cretaceous extinction. Geol. Soc. Amer. Spec. Pap. 190: 305–315.

    Google Scholar 

  • Arber, A. 1929. Studies in the Gramineae. VI. 1.Streptochaeta. 2.Anomochloa. 3.Ichnanthus. Ann. Bot. (London) 43: 35–53.

    Google Scholar 

  • Barker, N. P. 1995. A molecular phylogeny of the subfamily Arundinoideae (Poaceae). Ph.D. dissertation, University of Cape Town, South Africa.

    Google Scholar 

  • —,H. P. Linder &E. H. Harley. 1995. Polyphyly in the Arundinoideae (Poaceae): Evidence fromrbcL. Syst. Bot. 20: 423–435.

    Article  Google Scholar 

  • Baum, B. R. 1987. Numerical taxonomic analyses of the Poaceae. Pages 334–342in T. R. Soderstrom et al. (eds.), Grass systematics and evolution. Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Bessey, E. A. 1917. The phylogeny of grasses. Rep. Michigan Acad. Sci. 19: 239–245.

    Google Scholar 

  • Bews, J. W. 1929. The world’s grasses: Their differentiation, distribution, economics, and ecology. Longmans Green, London.

    Google Scholar 

  • Black, J. M. 1960. Flora of South Australia. Part 1. Ed. 2. W. L. Hawes, Adelaide.

    Google Scholar 

  • Bor, N. L. 1968. Flora of Iraq. Vol. 9, Gramineae. Ministry of Agriculture, Baghdad.

    Google Scholar 

  • Bowman, C. M., B. Koller, H. Delius &T. A. Dyer. 1981. A physical map of wheat chloroplast DNA showing the location of the structural genes for the ribosomal RNAs and the large subunit of ribu-lose 1,5-bisphosphate carboxylase. Molec. Gen. Genet. 183: 93–101.

    Article  CAS  Google Scholar 

  • Brown, W. V. 1977. The Kranz syndrome and its subtypes in grass systematics. Mem. Torrey Bot. Club 23: 1–97.

    CAS  Google Scholar 

  • —,W. F. Harris &J. D. Graham. 1959. Grass morphology and systematics: I. The internode. Southw. Naturalist 4: 115–125.

    Article  Google Scholar 

  • Butzin, F. 1965. Neue Untersuchungen über die Blüte der Gramineae. Ph.D. dissertation, Freie Universität Berlin.

  • Campbell, C. S. &E. A. Kellogg. 1987. Sister group relationships of the Poaceae. Pages 217–224in T. R. Soderstrom et al. (eds.), Grass systematics and evolution. Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • —,P. E. Garwood &L. P. Specht. 1986. Bambusoid affinities of the North American temperate genusBrachyelytrum (Gramineae). Bull. Torrey Bot. Club 113: 135–141.

    Article  Google Scholar 

  • Camus, E. G. 1913. Les Bambusées. Paul Lechevalier, Paris.

    Google Scholar 

  • Caro, J. A. 1982. Sinopsis taxonomica de las Gramineas Argentinas. Dominguesia 4: 1–51.

    Google Scholar 

  • Čelakovský, L. 1889. Über den Ährchenbau der brasilianische GrasgattungStreptochaeta Schrader. Sitzungsber. Königl. Böhm. Ges. Wiss. Prag., Math.-Naturwiss. Cl. 3: 14–42.

    Google Scholar 

  • Chapman, G. P. 1990. The widening perspective: Reproductive biology of bamboos, some dryland grasses and cereals. Pages 240–257in G. P. Chapman (ed.), Reproductive versatility in the grasses. Cambridge University Press, Cambridge.

    Google Scholar 

  • —. 1996. The biology of grasses. CAB International, Wallingford, UK.

    Google Scholar 

  • Chase, M. W., D. W. Stevenson, P. Wilkin &P. J. Rudall. 1995. Monocot systematics: A combined analysis. Pages 685–730in P. J. Rudall et al. (eds.), Monocotyledons: Systematics and evolution. Vol. 2. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Choo, Meng Keong, R. J. Soreng &J. I. Davis. 1994. Phylogenetic relationships amongPuccinellia and allied genera of Poaceae and inferred from chloroplast DNA restriction site variation. Amer. J. Bot. 81: 119–126.

    Article  CAS  Google Scholar 

  • Clark, L. G. &E. J. Judziewicz. 1996. The grass subfamilies Anomochlooideae and Pharoideae (Poaceae). Taxon 45: 641–645.

    Article  Google Scholar 

  • — &X. Londoño. 1991. Miscellaneous new taxa of bamboo (Poaceae: Bambuseae) from Colombia, Ecuador and Mexico. Nordic J. Bot. 11: 323–331.

    Google Scholar 

  • —,Weiping Zhang &J. F. Wendel. 1995. A phylogeny of the grass family (Poaceae) based onrdhF sequence data. Syst. Bot. 20: 436–460.

    Article  Google Scholar 

  • Clayton, W. D. 1975. Chorology of the genera of Gramineae. Kew Bull. 30: 111–132.

    Article  Google Scholar 

  • —. 1990. The spikelet. Pages 32–51in G. P. Chapman (ed.), Reproductive versatility in the grasses. Cambridge University Press, Cambridge.

    Google Scholar 

  • -& S. A. Renvoize. 1986. Genera Graminum, grasses of the world. Kew Bull. XIII.

  • Clifford, H. T. 1961. Floral evolution in the family Gramineae. Evolution 15: 455–460.

    Article  Google Scholar 

  • —. 1965. The classification of Poaceae: A statistical study. Papers, Dept. of Biology, University of Queensland 4: 243–253.

    Google Scholar 

  • —. 1987. Spikelet and floral morphology. Pages 21–30in T. R. Soderstrom et al. (eds.), Grass systematics and evolution. Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • —,W. T. Williams &G. N. Lance. 1969. A further numerical contribution to the classification of the Poaceae. Austral. J. Bot. 17: 119–131.

    Article  Google Scholar 

  • Conner, H. E. 1979. Breeding systems in the grasses: A survey. New Zealand J. Bot. 17: 547–574.

    Google Scholar 

  • —. 1981. Evolution of reproductive systems in the Gramineae. Ann. Missouri Bot. Gard. 68: 48–74.

    Article  Google Scholar 

  • —. 1987. Reproductive biology in grasses. Pages 117–132in T. R. Soderstrom et al. (eds.), Grass systematics and evolution. Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Crepet, W. L. &G. D. Feldman. 1991. The earliest remains of grasses in the fossil record. Amer. J. Bot. 78: 1010–1014.

    Article  Google Scholar 

  • Cronn, R. C., X. Zhao, A. H. Paterson &J. H. Wendel. 1996. Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J. Molec. Evol. 42: 685–705.

    Article  PubMed  CAS  Google Scholar 

  • Cronquist, A. 1981. An integrated system of classification of flowering plants. Columbia University Press, New York.

    Google Scholar 

  • Cummings, M. P., L. M. King &E. A. Kellogg. 1994. Slipped strand mispairing in a plastid gene:rpoC2 in grasses (Poaceae). Molec. Biol. Evol. 11: 1–8.

    PubMed  CAS  Google Scholar 

  • Dahlgren, R. M. T., H. T. Clifford &P. F. Yeo. 1985. The families of the monocotyledons. Springer-Verlag, New York.

    Google Scholar 

  • Darbysbire, S. J. &S. I. Warwick. 1992. Phylogeny of North AmericanFestuca (Poaceae) and related genera using chloroplast DNA restriction site variation. Canad. J. Bot. 70: 2415–2429.

    Google Scholar 

  • Davidse, G., M. Sousa &A. O. Charter. 1994. Flora Mesoamericana. Vol. 6, Alismataceae a Cyperaceae. Universidad Nacional Autonoma de Mexico, D.F., Mexico.

    Google Scholar 

  • Davis, J. I. 1993. Character removal as a means for assessing stability of clades. Cladistics 9: 201–210.

    Article  Google Scholar 

  • —. 1995. A phylogenetic structure of the monocotyledons, as inferred from chloroplast DNA restriction site variation, and a comparison of measures of clade support. Syst. Bot. 20: 503–527.

    Article  Google Scholar 

  • — &R. J. Soreng. 1993. Phylogenetic structure in the grass family (Poaceae) as inferred from chloroplast DNA restriction site variation. Amer. J. Bot. 81: 1444–1454.

    Article  Google Scholar 

  • —,M. W. Frohlich &R. W. Soreng. 1993. Cladistic characters and cladogram stability. Syst. Bot. 18: 188–196.

    Article  Google Scholar 

  • -,M. P. Simmons, D. W. Stevenson & J. F. Wendel. In press. Data decisiveness, data quality, and incongruence in phylogenetic analysis: An example from the monocotyledons using mitochondrialatpA sequences. Syst. Biol.

  • Davis, P. H. 1985. Flora of Turkey. Vol. 9. University Press, Edinburgh.

    Google Scholar 

  • Decker, H. F. 1964. An anatomic-systematic study of the classical tribe Festuceae (Gramineae). Amer. J. Bot. 51: 453–463.

    Article  Google Scholar 

  • de Wet, J. M. J. 1954. The genusDanthonia in grass phylogeny. Amer. J. Bot. 41: 204–211.

    Article  Google Scholar 

  • Doebley, J., M. Durbin, D. M. Golenberg, M. T. Clegg &Din Pow Ma. 1990. Evolutionary analysis of the large subunit of carboxylase (rbcL) nucleotide sequence among the grasses (Gramineae). Evolution 44: 1097–1108.

    Article  CAS  Google Scholar 

  • Downie, S. R. &J. D. Palmer. 1992. Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. Pages 14–35in P. S. Soltis et al. (eds.), Molecular systematics of plants. Chapman & Hall, New York.

    Google Scholar 

  • Doyle, J. D., J. I. Davis, R. J. Soreng, D. Garvin &M. J. Anderson. 1992. Chloroplast DNA inversions and the origin of the grass family (Poaceae). Proc. Natl. Acad. U.S.A. 89: 7722–7726.

    Article  CAS  Google Scholar 

  • Duvall, M. R. &B. R. Morton. 1996. Molecular phylogenetics of Poaceae: An expanded analysis ofrbcL sequence data. Molec. Phylogenet. & Evol. 5: 352–358.

    Article  CAS  Google Scholar 

  • —,M. T. Clegg, M. W. Chase, W. D. Clark, W. J. Kress, H. G. Hills, L. E. Eguiarte, J. F. Smith, B. S. Gaut, E. A. Zimmer &G. H. Learn Jr. 1993. Phylogenetic hypotheses for the monocotyledons constructed fromrbcL sequence data. Ann. Missouri Bot. Gard. 80: 607–619.

    Article  Google Scholar 

  • —,P. M. Peterson &A. H. Christensen. 1994. Alliances ofMuhlenbergia (Poaceae) within New World Eragrostideae are identified by phylogenetic analysis of mapped restriction sites from plastid DNAs. Amer. J. Bot. 81: 622–629.

    Article  Google Scholar 

  • Ebinger, J. E. &J. L. Carlen. 1975. Culm morphology and grass systematics. Trans. Illinois State Acad. Sci. 68: 87–101.

    Google Scholar 

  • Eernisse, D. J. &A. G. Kluge. 1993. Taxonomic congruence versus total evidence, and amniote phylogeny inferred from fossils, molecules, and morphology. Molec. Biol. Evol. 10: 1170–1195.

    PubMed  CAS  Google Scholar 

  • Engler, A. &K. Prantl. 1888. Die natürlichen Pflanzenfamilien. Vol. 2, subvol. 4. Engelmann, Leipzig.

    Google Scholar 

  • Farris, J. S. 1976. Phylogenetic classification of fossils with recent species. Syst. Zool. 25: 271–282.

    Article  Google Scholar 

  • —. 1980. The information content of the phylogenetic system. Syst. Zool. 28: 483–519.

    Article  Google Scholar 

  • —. 1989. The retention index and the rescaled consistency index. Cladistics 5: 417–419.

    Article  Google Scholar 

  • —,M. Källersjö, A. G. Kluge &C. Bult. 1994. Testing significance of incongruence. Cladistics 10: 315–319.

    Article  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791.

    Article  Google Scholar 

  • Fernald, M. L. 1950. Gray’s manual of botany. Ed. 8. Dioscorides Press, Portland, Oregon.

    Google Scholar 

  • Galbreath, E. C. 1974. Stipid grass “seeds” from the Oligocene and Miocene deposits of northeastern Colorado. Trans. Illinois State Acad. Sci. 67: 366–368.

    Google Scholar 

  • Gaut, B. S., B. R. Morton, B. C. McCaig &M. T. Clegg. 1996. Substitution rate comparisons between grasses and palms: Synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid generbcL. Proc. Natl. Acad. Sci. U.S.A. 93: 10274–10279.

    Article  PubMed  CAS  Google Scholar 

  • Goloboff, P. 1993a. Estimating character weights during tree search. Cladistics 9: 83–91.

    Article  Google Scholar 

  • -. 1993b.Nona, version 1.16 (computer software and manual). Distributed by the author.

  • -. 1993c.Piwe, version 2.15 (computer software and manual). Distributed by the author.

  • Gould, F. W. 1975. The grasses of Texas. Texas A & M University Press, College Station.

    Google Scholar 

  • Great Plains Flora Association. 1986. Flora of the Great Plains. University Press of Kansas, Lawrence.

    Google Scholar 

  • Hallam, A. 1987. End-Cretaceous mass extinction event: Argument for terrestrial causation. Science 238: 1237–1242.

    Article  PubMed  Google Scholar 

  • Hamby, R. K. &E. A. Zimmer. 1988. Ribosomal RNA sequences for inferring phytogeny within the grass family Poaceae. Pl. Syst. Evol. 160: 29–38.

    Article  CAS  Google Scholar 

  • ——. 1992. Ribosomal RNA as a phylogenetic tool in plant systematics. Pages 50–91in P. S. Soltis et al. (eds.), Molecular systematics of plants. Chapman & Hall, New York.

    Google Scholar 

  • Hattersley, P. W. 1987. Variations in photosynthetic pathway. Pages 49–64in T. R. Soderstrom et al. (eds.), Grass systematics and evolution. Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • — &L. Watson. 1992. Diversification of photosynthesis. Pages 38–116in G. P. Chapman (ed.), Grass evolution and domestication. Cambridge University Press, Cambridge.

    Google Scholar 

  • Heslop-Harrison, Y. &K. R. Shivanna. 1977. The receptive surface of the angiosperm stigma. Ann. Rev. Bot. 41: 1233–1258.

    Google Scholar 

  • Hilu, K. W. &K. Wright. 1982. Systematics of Gramineae: A cluster analysis study. Taxon 31: 9–36.

    Article  Google Scholar 

  • Hiratsuka, J., H. Shimada, R. Whittier, T. Ishibashi, M. Sakamoto, M. Mori, C. Kondo, Y. Honji, Sun Chong-Rong, Meng Bin-Yuan, Li Yu-Qing, A. Kanno, Y. Nishizawa, A. Hirai, K. Shinozaki &M. Sugiura. 1989. The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Molec. Gen. Genet. 217: 185–194.

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock, A. S. 1951. Manual of the grasses of the United States. Ed. 2, revised by A. Chase. U.S.D.A. Misc. Pub. 200, Washington, DC.

    Google Scholar 

  • Hitchcock, C. L. 1969. Gramineae. Pages 384–725in C. L. Hitchcock et al. (eds.), Vascular plants of the Pacific Northwest. Part 1. University of Washington Press, Seattle.

    Google Scholar 

  • Hock-Hin, Y. &L. Watson. 1987. Taxonomic patterns in protein amino acid profiles of grass leaves and caryopses. Pages 88–96in T. R. Soderstrom et al. (eds.), Grass systematics and evolution. Smith-sonian Institution Press, Washington, DC.

    Google Scholar 

  • Hollowell, V. C. 1987. Systematics of the subtribe Parianinae (Poaceae: Bambuseae: Olyreae). Ph.D. dissertation, University of South Carolina, Columbia.

    Google Scholar 

  • Holmgren, A. H. &N. H. Holmgren. 1977. Poaceae. Pages 175–464in A. Cronquist et al. (eds.), Intermountain Flora. Vol. 6. Columbia University Press, New York.

    Google Scholar 

  • Holmgren, P. K., N. H. Holmgren &L. C. Barnett. 1990. Index Herbariorum, part I: The herbaria of the world. Ed. 8. New York Botanical Garden, Bronx.

    Google Scholar 

  • Holub, J. 1980.Glyceria. Pages 179–181in T. G. Tutin et al. (eds.), Flora Europaea. Vol. 5. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hongping Liang &K. W. Hilu. 1996. Application of thematK gene sequences to grass systematics. Canad. J. Bot. 74: 125–134.

    Article  CAS  Google Scholar 

  • Hoshikawa, K. 1969. Underground organs of the seedlings and the systematics of Gramineae. Bot. Gaz. 130: 192–203.

    Article  Google Scholar 

  • Howe, C. J., R. F. Bowman &C. M. Dyer. 1988. Common features of three inversions in wheat chloroplast DNA. Curr. Genet. 13: 339–349.

    Article  Google Scholar 

  • Hunziker, J. H. 1989. Chromosome studies onAnomochloa and other Bambusoideae (Gramineae). Darwiniana 29: 41–45.

    Google Scholar 

  • Iturralde-Vinent, M. A. &R. D. E. MacPhee. 1996. Age and paleogeographical origin of Dominican amber. Science 273: 1850–1852.

    Article  CAS  Google Scholar 

  • Jacques-Felix, H. 1988. Les Liliopsida (ex Monocotyledones) n’ont pas de cotylédon. II. La pre feuille de la plantule: Ses rapports avec celles des axes feuillés. Adansonia 3: 275–333.

    Google Scholar 

  • Janzen, D. H. 1976. Why bamboos wait so long to flower. Ann. Rev. Ecol. Syst. 7: 347–391.

    Article  Google Scholar 

  • Jirasek, V. 1969. Morphologie der Schüppchen (Lodiculae) von Gräsern und ihre Terminologie ein witerer Beitrag zur Kenntnis des Baues der Lodiculae. Acta Univ. Carol. Biol. 1968: 321–344.

    Google Scholar 

  • —. 1970. Beitrag zur Kenntnis zweizellinger Haare bei Gräsern mit Benützunt von Pfeifen-gräsern-Moliniacaerulea (L.) Moench s.l. Acta Univ. Carol. Biol. 1969: 383–402.

    Google Scholar 

  • — &M. Jozifova. 1968. Morphology of lodicules, their variability and importance in the taxonomy of the Poaceae family. Bol. Soc. Argent. Bot. 12: 324–349.

    Google Scholar 

  • Johnston, C. R. &L. Watson. 1976. Microhairs: A universal characteristic of non-festucoid grass genera? Phytomorphology 26: 297–301.

    Google Scholar 

  • ——. 1981. Germination flaps in grass lemmas. Phytomorphology 31: 78–85.

    Google Scholar 

  • Judziewicz, E. J. 1987. Taxonomy and morphology of the tribe Phareae (Poaceae: Bambusoideae). Ph.D. dissertation, University of Wisconsin, Madison.

    Google Scholar 

  • —. 1990. Flora of the Guianas, fasc. 8, family 187. Poaceae (Gramineae). Koeltz, Koenigstein.

    Google Scholar 

  • — &T. R. Soderstrom. 1989. Morphological, anatomical and taxonomic studies inAnomochloa andStreptochaeta (Poaceae: Bambusoideae). Smithsonian Contr. Bot. 68: 1–52.

    Google Scholar 

  • Kellogg, E. A. &C. S. Campbell. 1987. Phylogenetic analyses of the Gramineae. Pages 310–322in T. R. Soderstrom et al. (eds.), Grass systematics and evolution. Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • — &H. P. Linder 1995. Phylogeny of the Poales. Pages 511–542in P. J. Rudall et al. (eds.), Monocotyledons: Systematics and evolution. Vol. 2. Royal Botanic Gardens, Kew.

    Google Scholar 

  • — &L. Watson. 1993. Phylogenetic studies of a large data set. I. Bambusoideae, Andropogonodae, and Pooideae (Gramineae). Bot. Rev. (Lancaster) 59: 273–343.

    Article  Google Scholar 

  • Kennedy, P. B. 1899. The structure of the caryopsis of grasses with reference to their morphology and classification. U.S.D.A. Div. Agrostol. Bull. 19: 1–44.

    Google Scholar 

  • Kim, K. J. &R. K. Jansen. 1994. Comparisons of phylogenetic hypotheses among different data sets in dwarf dandelions (Krigia, Asteraceae): Additional information from internal transcribed spacer sequences of nuclear ribosomal DNA. Pl. Syst. Evol. 190: 157–185.

    Article  CAS  Google Scholar 

  • Kinges, H. 1961. Merkmale des Gramineenembryos, ein Beitrag zur Systematik der Gräser. Bot. Jahrb. Syst. 81: 50–93.

    Google Scholar 

  • Kluge, A. G. 1989. A concern for evidence and a phylogenetic hypothesis of relationships amongEpicrates (Boidae, Serpentes). Syst. Zool. 38: 7–25.

    Article  Google Scholar 

  • — &J. S. Farris. 1969. Quantitative phyletics and the evolution of anurans. Syst. Zool. 18: 1–32.

    Article  Google Scholar 

  • — &A. J. Wolf. 1993. Cladistics: What’s in a word? Cladistics 9: 183–199.

    Article  Google Scholar 

  • Kunth, C. S. 1835. Enumeratio plantarum. I: Agrostographia synoptica. Sumptibus J. G. Collae, Stuttgart.

    Google Scholar 

  • Kuwabara, Y. 1961. On the shape and direction of leaves of grass seedlings J. Japan. Bot. 36: 368–373.

    Google Scholar 

  • Lavin, M. &M. Luckow. 1993. Origins and relationships of tropical North America in the context of the boreotropics hypothesis. Amer. J. Bot. 80: 1–14.

    Article  Google Scholar 

  • Linder, H. P. 1987. The evolutionary history of the Poales-Restionales: A hypothesis. Kew Bull. 42: 297–318.

    Article  Google Scholar 

  • — &I. K. Ferguson. 1985. On the pollen morphology and phylogeny of the Restionales and Poales. Grana 24: 65–76.

    Google Scholar 

  • — &E. A. Kellogg. 1995. Phylogenetic patterns in the Commelinid clade. Pages 473–496in P. J. Rudall et al. (eds.), Monocotyledons: Systematics and evolution. Vol. 2. Royal Botanic Gardens, Kew.

    Google Scholar 

  • — &P. J. Rudall. 1993. The megagametophyte inAnarthria (Anarthriaceae, Poales) and its implications for the phylogeny of the Poales. Amer. J. Bot. 80: 1455–1464.

    Article  Google Scholar 

  • Litke, R. 1968. Über den Nachweis tertiärer Gremineen. Monatsberichte der Deutschen Akademia der Wissenschaften zu Berlin 19: 462–471.

    Google Scholar 

  • McClure, F. A. 1973. Genera of bamboos native to the New World (Gramineae: Bambusoideae). Smith-sonian Contr. Bot. 9: 1–148.

    Google Scholar 

  • Macfarlane, T. D. &L. Watson. 1980. The circumscription of Poaceae subfamily Pooideae, with notes on some controversial genera. Taxon 29: 645–666.

    Article  Google Scholar 

  • Martinovský, J. O.1980.Stipa. Pages 247–252in T. G. Tutin et al. (eds.), Flora Europaea. Vol. 5. Cambridge University Press, Cambridge.

    Google Scholar 

  • Metcalfe, C. R. 1960. Anatomy of the monocotyledons, I. Gramineae. Clarendon Press, Oxford.

    Google Scholar 

  • Mickevich, M. F. &J. S. Farris. 1981. The implications of congruence inMenidia. Syst. Zool. 30: 351–370.

    Article  Google Scholar 

  • Mlada, J. 1977. The histological structure of the grass embryo and its significance for the taxonomy of the family Poaceae. Acta Univ. Carol. Biol. 1974: 51–156.

    Google Scholar 

  • Morton, B. R., B. S. Gaut &M. T. Clegg. 1996. Evolution of alcohol-dehydrogenase genes in the palm and grass families. Proc. Natl. Acad. U.S.A. 93: 11735–11739.

    Article  CAS  Google Scholar 

  • Müller, J. 1981. Fossil pollen records of extant angiosperms. Bot. Rev. (Lancaster) 47: 1–142.

    Article  Google Scholar 

  • Nadot, S., R. Bajon &B. Lejeune. 1994. The chloroplast generps 4 as a tool for the study of Poaceae phylogeny. Pl. Syst. Evol. 191: 27–38.

    Article  Google Scholar 

  • Nakai, T. 1943. Ordines, familiae, tribi, genera, sectiones, species, varietates, formae et combinationones novae a Prof. Nakai, Takenoshin adhuc ut novis edita. Festschrift, Tokyo.

    Google Scholar 

  • Nees ab Essenbeck, T. F. L. 1843. Genera plantarum florae Germanicae, iconibus et descriptionibus illustrata, plantarum monocotyledonearum. Vol. 1, Gramineae. Sumtibus Henry & Cohen, Bonn.

    Google Scholar 

  • Newell, T. K. 1969. A study of the genusJoinvillea (Flagellariaceae). J. Arnold Arbor. 50: 527–555.

    Google Scholar 

  • Niklas, K. J. 1985. The aerodynamics of wind-pollination. Bot. Rev. (Lancaster) 51: 328–386.

    Article  Google Scholar 

  • Nixon, K. C. 1993.Clados, version 1.4.98 (computer software and manual). Distributed by the author.

  • — 1996. Paleobotany in cladistics and cladistics in paleobotany: Enlightenment and uncertainty. Rev. Palaeobot. & Palynol. 90: 361–373.

    Article  Google Scholar 

  • -. 1997.Dada, version 1.1.4. (computer software and manual). Distributed by the author.

  • — &J. M. Carpenter. 1994. On outgroups. Cladistics 9: 413–426.

    Article  Google Scholar 

  • ——. 1996. On simultaneous analysis. Cladistics 12: 221–241.

    Article  Google Scholar 

  • — &J. I. Davis. 1991. Polymorphic taxa, missing values and cladistic analysis. Cladistics 7: 233–241.

    Article  Google Scholar 

  • Núñez, O. 1968. El problema de la pálea deOryza L. Bol. Soc. Argent. Bot. 12: 57–97.

    Google Scholar 

  • Page, J. S. 1978. A scanning electron microscope survey of grass pollen. Kew Bull. 32: 313–319.

    Article  Google Scholar 

  • Page, V. M. 1947. Leaf anatomyof Streptochaeta and the relation of this genus to the bamboos. Bull. Torrey Bot. Club 74: 232–239

    Article  Google Scholar 

  • Palmer, J. &W. F. Thompson. 1981. Rearrangements in the chloroplast genomes of mung bean and pea. Proc. Natl. Acad. Sci. U.S.A. 78: 5533–5537.

    Article  PubMed  CAS  Google Scholar 

  • Poinar, G. O. &J. T. Columbus. 1992. Adhesive grass spikelet with mammalian hair in Dominican amber: First fossil evidence of epizoochory. Experientia 48: 906–908.

    Article  PubMed  Google Scholar 

  • Prat, H. 1960. Vers une classification naturelle des Gramineés. Bull. Soc. Bot. Fra. 107: 32–79.

    Google Scholar 

  • Quigley, F. &J. H. Weil. 1985. Organization and sequence of five tRNA genes and of an unidentified reading frame in the wheat chloroplast genome: Evidence for gene rearrangements during the evolution of chloroplast genomes. Curr. Genet. 9: 495–503.

    Article  PubMed  CAS  Google Scholar 

  • Reeder, J. 1957. The embryo in grass systematics. Amer. J. Bot. 44: 756–768.

    Article  Google Scholar 

  • —. 1962. The Bambusoid embryo: A reappraisal. Amer. J. Bot. 49: 639–641.

    Article  Google Scholar 

  • Renvoize, S. A. 1985a. A survey of leaf-blade anatomy in grasses: V. The bamboo allies. Kew Bull. 40: 509–535.

    Article  Google Scholar 

  • —. 1985b. A survey of leaf-blade anatomy in grasses: VI. Stipeae. Kew Bull. 40: 731–736.

    Article  Google Scholar 

  • Rieppel, O. 1993. The role of paleontological data in testing homology by congruence. Acta Palaeontol. Polon. 38: 295–302.

    Google Scholar 

  • Rodman, J. E., K. G. Karol, R. A. Price &K. J. Sytsma. 1996. Molecules, morphology, and Dahlgren’s expanded order Capparales. Syst. Bot. 21: 289–307.

    Article  Google Scholar 

  • Rosengurtt, B., A. Laguardia &B. R. Arrillaga de Maffei. 1972. El character lipido del endosperma central en especies de Gramineas. Bol. Fac. Agron. Univ. Montevideo 124: 1–43.

    Google Scholar 

  • Roshevits, R. Yu. 1937. Zlaki. Vvedenie v izuchenie kormovykhi i khlebnyky zlakov. [Grasses. An introduction to the study of fodder and cereal grasses. English translation for the Smithsonian Institution and the National Science Foundation. 1980. Indian National Scientific Documentation Center, New Delhi.]

  • Salgado-Labouriau, M. L. &M. Rinaldi. 1990. Palynology of Gramineae of the Venezuelan mountains. Grana 29: 119–128.

    Google Scholar 

  • —,S. Nilsson &M. Rinaldi. 1992. Exine sculpture inPariana pollen (Gramineae). Grana 32: 243–249.

    Article  Google Scholar 

  • Scholz, H. 1982. Über Mikroun Makrohaare einigerPiptatherum undStipa-arten (Stipeae, Gramineae). Willdenowia 12: 235–240.

    Google Scholar 

  • Schuster, J. 1910. Über die Morphologie der Grasblüte. Flora 100: 213–266.

    Google Scholar 

  • Seberg, O., S. Frederiksen, C. Baden &I. Linde-Laursen. 1991.Peridictyon, a new genus from the Balkan peninsula, and its relationship withFestucopsis (Poaceae). Willdenowia 21: 87–104.

    Google Scholar 

  • Sharma, M. L. 1979. Some considerations on the phylogeny and chromosomal evolution in grasses. Cytologia 44: 679–685.

    Google Scholar 

  • Sinha, N. R. &E. A. Kellogg. 1996. Parallelism and diversity in multiple origins of C4 photosynthesis in the grass family. Amer. J. Bot. 83: 1458–1470.

    Article  Google Scholar 

  • Smith, A. B. &D. T. J. Littlewood. 1994. Paleontological data and molecular phylogenetic analysis. Paleobiology 20: 259–273.

    Google Scholar 

  • Smithson, E. 1957. The comparative anatomy of the Flagellariaceae. Kew Bull. 11: 491–501.

    Article  Google Scholar 

  • Soderstrom, T. R. 1980. A new species ofLithachne (Poaceae: Bambusoideae). Brittonia 32: 495–501.

    Article  Google Scholar 

  • —. 1981. Some evolutionary trends in the Bambusoideae (Poaceae). Ann. Missouri Bot. Gard. 68: 15–47.

    Article  Google Scholar 

  • — &C. E. Calderón. 1971. Insect-pollination in tropical rain forest grasses. Biotropica 3: 1–16.

    Article  Google Scholar 

  • ——. 1974. Primitive forest grasses and evolution of the Bambusoideae. Biotropica 6: 141–153.

    Article  Google Scholar 

  • ——. 1978.Chusquea andSwallenochloa (Poaceae: Bambusoideae): Generic relationships and new species. Brittonia 30: 279–312.

    Google Scholar 

  • ——. 1979. A commentary on the Bamboos (Poaceae: Bambusoideae). Biotropica 11: 161–172.

    Article  Google Scholar 

  • — &R. P. Ellis. 1987. The position of bamboo genera and allies in a system of grass classification. Pages 225–238in T. R. Soderstrom et al. (eds.), Grass systematics and evolution. Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • — &F. O. Zuloaga. 1989. A revision of the genusOlyra and the new segregate genusParodiolyra (Poaceae: Bambusoideae: Olyreae). Smithsonian Contr. Bot. 69: i-iv, 1–79.

    Google Scholar 

  • Soreng, R. J., J. I. Davis &J. J. Doyle. 1990. Phylogenetic analysis of chloroplast DNA restriction site variation in Poaceae subfam. Pooideae. Pl. Syst. Evol. 171: 83–97.

    Article  Google Scholar 

  • Srivastava, S. K. 1994. Palynology of the Cretaceous-Tertiary boundary in the Scollard Formation of Alberta, Canada, and global KTB events. Rev. Palaeobot. & Palynol. 83: 137–158.

    Article  Google Scholar 

  • Stace, C. A. 1980.Vulpia. Pages 154–156in T. G. Tutin et al. (eds.), Flora Europaea. Vol. 5. Cambridge University Press, Cambridge.

    Google Scholar 

  • Stebbins, G. L. 1956. Cytogenetics and the evolution of the grass family. Amer. J. Bot. 43: 890–905.

    Article  Google Scholar 

  • —. 1974. Flowering plants: Evolution above the species level. Belknap Press, Harvard University, Cambridge.

    Google Scholar 

  • —. 1981. Coevolution of grasses and herbivores. Ann. Missouri Bot. Gard. 68: 75–86.

    Article  Google Scholar 

  • —. 1987. Grass systematics and evolution: Past, present, and future. Pages 359–367in T. R. Soderstrom et al. (eds.), Grass systematics and evolution. Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • — &B. Crampton. 1961. A suggested revision of the grass genera of Temperate North America. Pages 133–145in Recent Advances in Botany, Vol. 1. University of Toronto Press, Toronto.

    Google Scholar 

  • Stevenson, D. W. &H. Loconte. 1995. Cladistic analysis of monocot families. Pages 543–578in P. J. Rudall et al. (eds.), Monocotyledons: Systematics and evolution. Vol. 2. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Sugiura, M. 1989.Oryza sativa chloroplast DNA 134,525 bp. Nagoya University, Center for Gene Research, Nagoya, Japan.

    Google Scholar 

  • —,K. Shinozaki, N. Zaita, M. Kusuda &M. Kumano. 1986. Clone bank of the tobacco (Nicotiana tabacum) chloroplast genome as a set of overlapping restriction endonuclease fragments: Mapping of eleven ribosomal protein genes. Pl. Sci. 44: 211–216.

    Article  CAS  Google Scholar 

  • Swofford, D. L. 1991. When are phylogeny estimates from molecular and morphological data incongruent? Pages 295–333in M. M. Miyamoto & J. Cracraft (eds.), Phylogenetic analysis of DNA sequences. Oxford University Press, New York.

    Google Scholar 

  • Tateoka, T. 1957. Miscellaneous papers on the phylogeny of Poaceae, X: Proposition of a new phylogenetic system of Poaceae. J. Japan. Bot. 32: 275–287.

    Google Scholar 

  • —. 1962. Starch grains of endosperm in grass systematics. Bot. Mag. (Tokyo) 75: 377–383.

    Google Scholar 

  • —. 1964. Notes on some grasses. XVI. Embryo structure of the genusOryza in relation to systematics. Amer. J. Bot. 51: 539–543.

    Article  Google Scholar 

  • —,S. Inoue &S. Kawano. 1959. Notes on some grasses. IX. Systematic significance of bicellular microhairs of leaf epidermis. Bot. Gaz. 121: 80–91.

    Article  Google Scholar 

  • Terrell, E. E. 1971. Survey of occurrences of liquid or soft endosperm in grass genera. Bull. Torrey Bot. Club 98: 264–268.

    Article  Google Scholar 

  • Thomas, K. M., B. J. Wood, C. L. Bassett &J. R. Y. Rawson. 1984. A restriction endonuclease map of the chloroplast genome of pearl millet. Curr. Genet. 8: 291–297.

    Article  CAS  Google Scholar 

  • Thomasson, J. R. 1987. Fossil grasses: 1820–1986 and beyond. Pages 159–167in T. R. Soderstrom et al. (eds.), Grass systematics and evolution. Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Tillich, H.-J. 1996. Seeds and seedlings in Hanguanaceae and Flagellariaceae (Monocotyledons). Sendtnera 3: 187–197.

    Google Scholar 

  • —. 1980.Ampelodesmos, Anthoxanthum, and Triticeae tribal description. Pages 190,229–230,252in T. G. Tutin et al. (eds.), Flora Europaea. Vol. 5. Cambridge University Press, Cambridge.

    Google Scholar 

  • Tzvelev, N. N. 1977. Zlaki S.S.S.R. [Grasses of the Soviet Union. English translation for the Smith-sonian Institution. 1983. Amerind Publishing Co., New Delhi.]

  • —. 1989. The system of grasses (Poaceae) and their evolution. Bot. Rev. (Lancaster) 55: 141–204.

    Google Scholar 

  • Uhl, N. W., J. Dransfield, J. I. Davis, M. A. Luckow, K. S. Hansen &J. J. Doyle. 1995. Phylogenetic relationships among palms: Cladistic analyses of morphological and chloroplast DNA restriction site variation. Pages 623–661in P. J. Rudall et al. (eds.), Monocotyledons: Systematics and evolution. Vol. 2. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Verboom, G. A., H. P. Linder &N. P. Barker. 1994. Haustorial synergids: An important character in the systematics of Danthonioid grasses (Arundinoideae: Poaceae). Amer. J. Bot. 81: 1601–1610.

    Article  Google Scholar 

  • Warming, E. 1895. A handbook of systematic botany. Macmillan, New York

    Google Scholar 

  • Watrous, L. E. &Q. D. Wheeler. 1981. The out-group comparison method of character analysis. Syst. Zool. 30: 1–11.

    Article  Google Scholar 

  • Watson, L. &M. J. Dallwitz. 1992. The grass genera of the world. CAB International, Wallingford, UK.

    Google Scholar 

  • —,H. T. Clifford &M. J. Dallwitz. 1985. The classification of Poaceae: Subfamilies and supertribes. Austral. J. Bot. 33: 433–484.

    Article  Google Scholar 

  • Wendel, J. F., A. Schnabel &T. Seelanan. 1995. An unusual ribosomal DNA sequence fromGossypium gossypioides reveals ancient, cryptic, intergenomic introgression. Molec. Phyl. Evol. 4: 298–313.

    Article  CAS  Google Scholar 

  • Wheeler, W. C., P. Cartwright &C. Y. Hayashi. 1993. Arthropod phylogeny: A combined approach. Cladistics 9: 1–39.

    Article  Google Scholar 

  • Wiley, E. O. 1981. Phylogenetics, the theory and practice of phylogenetic systematics. John Wiley, New York.

    Google Scholar 

  • Williams, S. E., V. A. Albert &M. W. Chase. 1994. Relationships of Droseraceae: A cladistic analysis ofrbcL sequence and morphological data. Amer. J. Bot. 81: 1027–1037.

    Article  Google Scholar 

  • Wolfe, J. A. 1975. Some aspects of the plant geography of the Northern Hemisphere during the Late Cretaceous and Tertiary. Ann. Missouri Bot. Gard. 62: 264–279.

    Article  Google Scholar 

  • -. 1977. Paleogene floras from the Gulf of Alaska region. Geol. Surv. Prof. Paper no. 997. 108 pp. + 30 pls.

  • —. 1978. A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere. Amer. Scientist 6: 694–703.

    Google Scholar 

  • Yakovlev, M. S. 1950. Struktura endosperma i zarodysha zlakov kak sistematicheskiy priznak. Trudy Bot. Inst. Komarova, Ser. 7, Morfol. Anat. Rast. 1: 121–128. [Structure of the endosperm and embryo of grasses as a systematic criterion. Unpublished English translation. 1970. Indian National Scientific Documentation Center, New Delhi.]

    Google Scholar 

  • Yaneshita, M., T. Sasakuma &Y. Ogihara. 1993. Phylogenetic relationships of turfgrasses as revealed by restriction fragment analysis of chloroplast DNA. Theor. Appl. Genet. 87: 129–135.

    Article  CAS  Google Scholar 

  • Yates, H. O. 1966. Morphology and cytology ofUniola (Gramineae). Southw. Naturalist 11: 145–189.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soreng, R.J., Davis, J.I. Phylogenetics and character evolution in the grass family (Poaceae): Simultaneous analysis of morphological and Chloroplast DNA restriction site character sets. Bot. Rev 64, 1–85 (1998). https://doi.org/10.1007/BF02868851

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02868851

Keywords

Navigation