Skip to main content
Log in

Part II. Algebraic tails in three-dimensional quantum plasmas

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We review various exact results concerning the presence of algebraic tails in three-dimensional quantum plasmas. First, we present a solvable model of two quantum charges immersed in a classical plasma. The effective potential between the quantum charges is shown to decay as 1/r 6 at large distances r. Then, we mention semiclassical expansions of the particle correlations for charged systems with Maxwell-Boltzmann statistics and short-ranged regularization of the Coulomb potential. The quantum corrections to the classical quantities, from orderh 4 on, also decay as 1/r 6. We also give the result of an analysis of the charge correlation for the one-component plasma in the framework of the usual many-body perturbation theory; some Feynman graphs beyond the random phase approximation display algebraic tails. Finally, we sketch a diagrammatic study of the correlations for the full many-body problem with quantum statistics and pure 1/r interactions. The particle correlations are found to decay as 1/r 6, while the charge correlation decays faster, as 1/r 10. The coefficients of these tails can be exactly computed in the low-density limit. The absence of exponential screening arises from the quantum fluctuations of partially screened dipolar interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. J. Dyson and A. Lenard,J. Math. Phys. 8, 423 (1967); 9, 698 (1968).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. J. L. Lebowitz and E. Lieb,Adv. Math. 9, 316 (1972); E. H. Lieb,Rev. Mod. Phys. 48, 553 (1976).

    Article  MathSciNet  Google Scholar 

  3. P. Debye and E. Hückel,Phys. Z. 9, 185 (1923).

    Google Scholar 

  4. L. H. Thomas,Proc. Camb. Phil Soc. 23, 542 (1927); E. Fermi, Z.Physik 48, 73 (1928); N. F. Mott,Proc. Camb. Phil. Soc. 32, 281 (1936).

    Article  MATH  Google Scholar 

  5. D. Pines and Ph. Nozieres,The Theory of Quantum Liquids (Benjamin, New York, 1986).

    Google Scholar 

  6. D. G Brydges and P. Federbush,Commun. Math. Phys. 73, 197 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  7. D. C. Brydges and P. Federbush,Rigorous Atomic and Molecular Physics, edited by G. Velo and A. S. Wightman (Plenum Press, New York, 1981).

    Google Scholar 

  8. D. G Brydges and E. Seiler,J. Stat. Phys. 42, 405 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  9. A. Alastuey and Ph. A. Martin,Phys. Rev. A 40, 6485 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Alastuey and Ph. A. Martin,Europhys. Lett. 6, 385 (1988).

    Article  ADS  Google Scholar 

  11. F. Cornu and Ph. A. Martin,Phys Rev. A 44, 4893 (1991).

    Article  ADS  Google Scholar 

  12. F. Cornu, inPhysics of Strongly Coupled Plasmas, ed. by W. D. Kraeft and M. Schlanges (World Scientific, Singapour, 1996).

    Google Scholar 

  13. F. Cornu,Phys. Rev. E 53, 4562 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  14. F. Cornu,Phys. Rev. E 53, 4595 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  15. F. Cornu,Phys. Rev. Lett. 78, 1464 (1997).

    Article  ADS  Google Scholar 

  16. Ph. A. Martin,Rev. Mod. Phys. 60, 1075 (1988).

    Article  ADS  Google Scholar 

  17. E. H. Lieb and H. Narnhofer,J. Stat. Phys. 12, 291 (1975);J. Stat. Phys. 14, 465 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  18. A. Alastuey,Annales de Physique (Paris)11, 653 (1986).

    ADS  Google Scholar 

  19. B. Jancovici,Mol.Phys. 32, 1177 (1976).

    Article  ADS  Google Scholar 

  20. M. M. Gombert and D. Léger,Phys. Lett. A 185, 417 (1994).

    Article  ADS  Google Scholar 

  21. A. L. Fetter and J. D. Walecka,Quantum Theory of Many Particle Systems (McGraw-Hill, New York, 1971); J. W. Negele and H. Orland,Quantum Many-Particle Systems, in Frontiers in Physics, vol. 68 (Addison-Wesley, 1988).

    Google Scholar 

  22. B. Jancovici,Physica 91A, 152 (1978).

    ADS  Google Scholar 

  23. A. C. Maggs and N. W. Ashcroft,Phys. Rev. Lett. 59, 113 (1987).

    Article  ADS  Google Scholar 

  24. D. C. Langreth and S. H. Vosko,Phys. Rev. Lett. 59, 497 (1987).

    Article  ADS  Google Scholar 

  25. J. Friedel,Phil. Mag. 43, 153 (1952);Nuovo Cimento 7 Suppl. 2, 287, (1958).

    MATH  Google Scholar 

  26. J. Ginibre,J. Math. Phys. 6, 238 (1965);J. Math. Phys. 6, 252 (1965);J. Math. Phys. 6, 1432 (1965); inStatistical Mechanics and Quantum Field Theory, 1971 Les Houches Lectures, ed. by C. de Witt and R. Stora (Gordon and Breach, New York, 1971).

    Article  ADS  MathSciNet  Google Scholar 

  27. J. S. Høye and G. Stell,J. Stat Phys. 77, 361 (1994).

    Article  ADS  Google Scholar 

  28. J. E. Mayer and M. G. Mayer, Statistical Mechanics (Wiley, New York, 1940); J. E. Mayer and E. Montroll,J. Chem. Phys. 9, 2 (1941).

    MATH  Google Scholar 

  29. T. Morita and K. Hiroike,Prog. Theor. Phys. 25, 537 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  30. J. P. Hansen and I. R. McDonald,Theory of Simple Liquids (Academic Press, London, 1976).

    Google Scholar 

  31. E. Meeron,J. Chem. Phys. 28, 630 (1958);Plasma Physics (Mc Graw-Hill, New York, 1961).

    Article  ADS  Google Scholar 

  32. Ph. A. Martin, to be published.

  33. D. C. Brydges and G. Keller,J. Stat. Phys. 76, 285 (1994).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. Ph. A. Martin and Ch. Oguey,Phys. Rev. A 33, 4191 (1986).

    Article  ADS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alastuey, A., Cornu, F. Part II. Algebraic tails in three-dimensional quantum plasmas. J Stat Phys 89, 20–35 (1997). https://doi.org/10.1007/BF02770752

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02770752

Key Words

Navigation