Skip to main content
Log in

Exact solution of two-species ballistic annihilation with general pair-reaction probability

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The reaction processA + B → ∅ is modeled for ballistic reactants on an infinite line with particle velocitiesυ A =c andυ B = -c and initially segregated conditions, i.e., allA particles to the left and allB particles to the right of the origin. Previous models of ballistic annihilation have particles that always react on contact, i.e., pair-reaction probabilityp = 1. The evolutions of such systems are wholly determined by the initial distributions of particles and therefore do not have a stochastic dynamics. However, in this paper the generalization is made to p< 1, allowing particles to pass through each other without necessarily reacting. In this way, theA andB particle domains overlap to form a fluctuating, finitesized reaction zone where the product ∅ is created. Fluctuations are also included in the currents ofA andB particles entering the overlap region, thereby inducing a stochastic motion of the reaction zone as a whole. These two types of fluctuations, in the reactions and particle currents, are characterised by theintrinsic reaction rate, seen in a single system, and theextrinsic reaction rate, seen in an average over many systems. The intrinsic and extrinsic behaviors are examined and compared to the case of isotropically diffusing reactants

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For a recent review see S. Redner inNonequilibrium Statistical Mechanics in One Dimension, ed V. Privman, Cambridge University Press, 1997.

  2. R. Kroon, H. Fleurent, and R. Sprik,Phys. Rev. E 47:2462 (1993).

    Article  ADS  Google Scholar 

  3. D. Toussaint and F. Wilczek,J. Chem. Phys. 78:2642 (1983).

    Article  ADS  Google Scholar 

  4. Part VII-Experimental results.Nonequilibrium Statistical Mechanics in One Dimension, ed V. Privman, Cambridge University Press, 1997.

  5. L. Gálfi and Z. Râcz,Phys. Rev. A 38:3151 (1988).

    Article  ADS  Google Scholar 

  6. Y. Elskens and H. L. Frisch,Phys. Rev. A 31:3812 (1985).

    Article  ADS  Google Scholar 

  7. M. Droz, P. A. Rey, L. Frachebourg, and J. Piasecki,Phys. Rev. E 51:5541 (1995).

    Article  ADS  Google Scholar 

  8. J. Piasecki,Phys. Rev. E 51:5535 (1995).

    Article  ADS  Google Scholar 

  9. J. Piasecki, P. A. Rey, and M. Droz,Physica 229A:515 (1996).

    ADS  Google Scholar 

  10. P.-A. Rey, M. Droz, and J. Piasecki,Euro. Jour. Phys. (may 1997, to appear).

  11. E. Ben-Nairn and S. Redner,J. Phys. A 25:L575 (1992).

    Article  ADS  Google Scholar 

  12. G. T. Barkema, M. J. Howard, and J. L. Cardy,Phys. Rev. E 53:R2017 (1996).

    Article  ADS  Google Scholar 

  13. M. Bramson and J. L. Lebowitz,J. Stat. Phys. 65:941 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  14. B. P. Lee and J. Cardy,Phys. Rev. E 50:R3287 (1994).

    Article  ADS  Google Scholar 

  15. S. Cornell and M. Droz,Phys. Rev. Lett. 70:3824 (1993).

    Article  ADS  Google Scholar 

  16. M. J. E. Richardson and M. R. Evans,J. Phys. A 30:811 (1997).

    Article  MATH  ADS  Google Scholar 

  17. S. Cornell, M. Droz, and B. Chopard,Phys. Rev. A 44:4826 (1991).

    Article  ADS  Google Scholar 

  18. M. Araujo, S. Havlin, H. Larralde, and H. E. Stanley,Phys. Rev. Lett. 68:1791 (1992).

    Article  ADS  Google Scholar 

  19. P. L. Krapivsky,Phys. Rev. E 51:4774 (1995).

    Article  ADS  Google Scholar 

  20. S. Cornell,Phys. Rev. E 51:4055 (1995).

    Article  ADS  Google Scholar 

  21. S. A. Janowsky,Phys. Rev. E 51:1858 (1995).

    Article  ADS  Google Scholar 

  22. I. Ispolatov, P. L. Krapivsky, and S. Redner,Phys. Rev. E 52:2540 (1995).

    Article  ADS  Google Scholar 

  23. A. Turing,Philos. Trans. Roy. Soc. London Series B 237 :37.

  24. S. Sandow and G. Schütz,Europhys. Lett. 26:7 (1994).

    Article  MathSciNet  Google Scholar 

  25. S. Sandow,Phys. Rev. E 40:2660 (1994).

    Article  ADS  Google Scholar 

  26. F. H. L. Essler and V. Rittenberg,J. Phys. A 29:3375 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier,J. Phys A 26:1493 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. L. C. Biedenharn,J. Phys. A 22:L873 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  29. G. Schütz and E. Domany,J. Stat. Phys. 72:277 (1993).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. E. Richardson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richardson, M.J.E. Exact solution of two-species ballistic annihilation with general pair-reaction probability. J Stat Phys 89, 777–799 (1997). https://doi.org/10.1007/BF02765544

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02765544

Key Words

Navigation