Skip to main content
Log in

Molecular population genetics of theβ-esterase gene cluster ofDrosophila melanogaster

  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

We have investigated nucleotide polymorphism at theβ-esterase gene cluster including theEst-6 gene andψEst-6 putative pseudogene in four samples ofDrosophila melanogaster derived from natural populations of southern Africa (Zimbabwe), Europe (Spain), North America (USA: California), and South America (Venezuela). A complex haplotype structure is revealed in bothEst-6 andψEst-6. Total nucleotide diversity is twice inψEst-6 as inEst-6; diversity is higher in the African sample than in the non-African ones. Strong linkage disequilibrium occurs within theβ-esterase gene cluster in non-African samples, but not in the African one. Intragenic gene conversion events are detected withinEst-6 and, to a much greater extent, withinyEst-6; intergenic gene conversion events are rare. Tests of neutrality with recombination are significant for theβ-esterase gene cluster in the non-African samples but not significant in the African one. We suggest that the demographic history (bottleneck and admixture of genetically differentiated populations) is the major factor shaping the pattern of nucleotide polymorphism in theb-esterase gene cluster. However there are some ’footprints’ of directional and balancing selection shaping specific distribution of nucleotide polymorphism within the cluster. Intergenic epistatic selection betweenEst-6 andψEst-6 may play an important role in the evolution of theβ-esterase gene cluster preserving the putative pseudogene from degenerative destruction and reflecting possible functional interaction between the functional gene and the putative pseudogene.Est-6 andyEst-6 may represent an indivisible intergenic complex (‘intergene’) in which each single component (Est-6 orψEst-6) cannot separately carry out the full functional role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andolfatto P. 2001 Contrasting patterns of X-linked and autosomal nucleotide variation inDrosophila melanogaster andDrosophila simulans.Mol. Biol. Evol. 18, 279–290.

    PubMed  CAS  Google Scholar 

  • Aquadro C. F., Bauer V. and Reed F. A. 2001 Genome-wide variation in the human and fruitfly: a comparison.Curr. Opin. Genet. Dev. 11, 627–634.

    Article  PubMed  CAS  Google Scholar 

  • Ayala F. J., Balakirev E. S. and Sáez A. G. 2002 Genetic polymorphism at two linked loci,Sod andEst-6, inDrosophila melanogaster.Gene 300, 19–29.

    Article  PubMed  CAS  Google Scholar 

  • Athma P. and Peterson T. 1991Ac induces homologous recombination at the maizeP locus.Genetics 128, 163–173.

    PubMed  CAS  Google Scholar 

  • Bailis A. M. and Rothstein R. 1990 A defect in mismatch repair inSaccharomyces cerevisiae stimulates ectopic recombination between homeologous genes by an excision repair dependent process.Genetics 126, 535–547.

    PubMed  CAS  Google Scholar 

  • Balakirev E. S. and Ayala F. J. 1996 Is esterase-P encoded by a cryptic pseudogene inDrosophila melanogaster?Genetics 144, 1511–1518.

    PubMed  CAS  Google Scholar 

  • Balakirev E. S. and Ayala F. J. 2003a Nucleotide variation of theEst-6 gene region in natural populations ofDrosophila melanogaster.Genetics 165, 1901–1914.

    PubMed  CAS  Google Scholar 

  • Balakirev E. S. and Ayala F. J. 2003b Pseudogenes: are they "junk" or functional DNA?Annu. Rev. Genet. 37, 123–151.

    Article  PubMed  CAS  Google Scholar 

  • Balakirev E. S. and Ayala F. J. 2003c Pseudogenes are not junk DNA. InEvolutionary theory and processes: modern horizons (ed. S. P. Wasser), pp. 1–17. Kluwer, Amsterdam.

    Google Scholar 

  • Balakirev E. S. and Ayala F. J. 2004 Nucleotide variation in thetinman andbagpipe homeobox genes ofDrosophila melanogaster. Genetics (in press).

  • Balakirev E. S., Balakirev E. I., Rodriguez-Trelles F. and Ayala F. J. 1999 Molecular evolution of two linked genes,Est-6 andSod, inDrosophila melanogaster.Genetics 153, 1357–1369.

    PubMed  CAS  Google Scholar 

  • Balakirev E. S., Balakirev E. I. and Ayala F. J. 2002 Molecular evolution of theEst-6 gene inDrosophila melanogaster: Contrasting patterns of DNA variability in adjacent functional regions.Gene 288, 167–177.

    Article  PubMed  CAS  Google Scholar 

  • Balakirev E. S., Chechetkin V. R., Lobzin V. V. and Ayala F. J. 2003 DNA polymorphism in theb-esterase gene cluster ofDrosophila melanogaster.Genetics 164, 533–544.

    PubMed  CAS  Google Scholar 

  • Begun D. J. and Aquadro C. F. 1993 African and North American populations ofDrosophila melanogaster are very different at the DNA level.Nature 365, 548–550.

    Article  PubMed  CAS  Google Scholar 

  • Bénassi V., Depaulis F., Meghlaoui G. K. and Veuille M. 1999 Partial sweeping of variation at theFbp2 locus in a West African population ofDrosophila melanogaster.Mol. Biol. Evol. 16, 347–353.

    PubMed  Google Scholar 

  • Borts R. H. and Haber J. E. 1987 Meiotic recombination in yeast: alteration by multiple heterozygosities.Science 237, 1459–1465.

    Article  PubMed  CAS  Google Scholar 

  • Brady J. P. and Richmond R. C. 1992 An evolutionary model for the duplication and divergence of esterase genes inDrosophila.J. Mol. Evol. 34, 506–521.

    Article  PubMed  CAS  Google Scholar 

  • Brady J. P., Richmond R. C. and Oakeshott J. G. 1990 Cloning of the esterase-5 locus fromDrosophila pseudoobscura and comparison with its homologue inD. melanogaster.Mol. Biol. Evol. 7, 525–546.

    PubMed  CAS  Google Scholar 

  • Brosius J. and Gould S. J. 1992 On "genomenclature": A comprehensive (and respectful) taxonomy for pseudogenes and other "junk DNA".Proc. Natl. Acad. Sci. USA 89, 10706–10710.

    Article  PubMed  CAS  Google Scholar 

  • Chambers S. R., Hunter N., Louis E. J. and Borts R. H. 1996 The mismatch repair system reduces meiotic homeologous recombination and stimulates recombination-dependent chromosome loss.Mol. Cell. Biol. 16, 6110–6120.

    PubMed  CAS  Google Scholar 

  • Chen W. and Jinks-Robertson S. 1999 The role of mismatch repair machinery in regulating mitotic and meiotic recombination between diverged sequences in yeast.Genetics 151, 1299–1313.

    PubMed  CAS  Google Scholar 

  • Claverys J. P. and Lacks S. A. 1986 Heteroduplex deoxyribonucleic acid base mismatch repair in bacteria.Microbiol. Rev. 50, 133–165.

    PubMed  CAS  Google Scholar 

  • Collet C., Nielsen K. M., Russell R. J., Karl M., Oakeshott J. G. and Richmond R. C. 1990 Molecular analysis of duplicated esterase genes inDrosophila melanogaster.Mol. Biol. Evol. 7, 9–28.

    PubMed  CAS  Google Scholar 

  • Collick A. and Jeffreys A. J. 1990 Detection of a novel minisatellite-specific DNA-binding protein.Nucl. Acids Res. 18, 625–629.

    Article  PubMed  CAS  Google Scholar 

  • Comeron J. M., Kreitman M. and Aguadé M. 1999 Natural selection on synonymous sites is correlated with gene length and recombination inDrosophila.Genetics 151, 239–249.

    PubMed  CAS  Google Scholar 

  • Cooke P. H. and Oakeshott J. G. 1989 Amino acid polymorphisms for esterase-6 in Drosophila melanogaster.Proc. Natl. Acad. Sci. USA 86, 1426–1430.

    Article  PubMed  CAS  Google Scholar 

  • Datta A., Adjiri A., New L., Grouse G. F. and Jinks-Robertson S. 1996 Mitotic crossovers between diverged sequences are regulated by mismatch repair proteins inSaccharomyces cerevisiae.Mol. Cell. Biol. 176, 1085–1093.

    Google Scholar 

  • Datta A., Hendrix M., Lipsitch M. and Jinks-Robertson S. 1997 Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast.Proc. Natl. Acad. Sci. USA 94, 9757–9762.

    Article  PubMed  CAS  Google Scholar 

  • David J. R. and Capy P. 1988 Genetic variation ofDrosophila melanogaster natural populations.Trends Genet. 4, 106–111.

    Article  PubMed  CAS  Google Scholar 

  • De Wind N., Dekker M., Berns A., Radman M. and Riele H. T. 1995 Inactivation of the mouseMsh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination and predisposition to cancer.Cell 82, 321–330.

    Article  PubMed  Google Scholar 

  • Dumancic M. M., Oakeshott J. G., Russell R. J. and Healy M. J. 1997 Characterization of theEstP protein inDrosophila melanogaster and its conservation in Drosophilids.Biochem. Genet. 35, 251–271.

    Article  PubMed  CAS  Google Scholar 

  • East P. D., Graham A. and Whitington G. 1990 Molecular isolation and preliminary characterization of a duplicated esterase locus inDrosophila buzzatii. InEcological and evolutionary genetics of Drosophila (ed. J. S. F. Barker, W. T. Starmer and R. J. MacIntyre), pp. 389–406. Plenum, New York.

    Google Scholar 

  • Elliott B., Richardson C., Winderbaum J., Nickoloff J. A. and Jasin M. 1998 Gene conversion tracts in mammalian cells from double-strand break repair.Mol. Cell. Biol. 18, 93–101.

    PubMed  CAS  Google Scholar 

  • Engels W. R. 1989 P elements inDrosophila melanogaster. InMobile DNA (ed. D. Berg and M. Howe), pp. 437–484. American Society for Microbiology, Washington, D. C.

    Google Scholar 

  • Filatov D. A. and Charlesworth D. 1999 DNA polymorphism, haplotype structure and balancing selection in the Leavenworthia PgiC locus.Genetics 153, 1423–1434.

    PubMed  CAS  Google Scholar 

  • Frisse L., Hudson R. R., Bartoszewicz A., Wall J. D., Donfack J. and Di Rienzo A. 2001 Gene conversion and different population histories may explain the contrast between polymerphism and linkage disequilibrium levels.Am. J. Hum. Genet. 69, 831–843.

    Article  PubMed  CAS  Google Scholar 

  • Game A. Y. and Oakeshott J. G. 1990 Associations between restriction site polymorphism and enzyme activity variation for esterase 6 inDrosophila melanogaster.Genetics 126, 1021–1031.

    PubMed  CAS  Google Scholar 

  • Giribet G. and Wheeler W. C. 1999 On gaps.Mol. Phylogenet. Evol. 13, 132–143.

    Article  PubMed  CAS  Google Scholar 

  • Gomez G. A. and Hasson E. 2003 Transpecific polymorphisms in an inversion linked esterase locus inDrosophila buzzatii.Mol. Biol. Evol. 20, 410–423.

    Article  PubMed  CAS  Google Scholar 

  • Goss P. J. E. and Lewontin R. C. 1996 Detecting heterogeneity of substitution along DNA and protein sequences.Genetics 143, 589–602.

    PubMed  CAS  Google Scholar 

  • Graur D. and Li W.-H. 2000Fundamentals of molecular evolution, 2nd edition. Sinauer, Sunderland.

    Google Scholar 

  • Gromko M. H., Gilbert D. F. and Richmond R. C. 1984 Sperm transfer and use in the multiple mating system ofDrosophila. InSperm competition and the evolution of animal mating systems (ed. R. L. Smith), pp. 371–426. Academic Press, New York.

    Google Scholar 

  • Harris S., Rudnicki K. S. and Haber J. E. 1993 Gene conversions and crossing over during homologous and homeologous ectopic recombination inSaccharomyces cerevisiae.Genetics 135, 5–16.

    PubMed  CAS  Google Scholar 

  • Hasson E. and Eanes W. F. 1996 Contrasting histories of three gene regions associated withIn(3L)Payne ofDrosophila melanogaster.Genetics 144, 1565–1575.

    PubMed  CAS  Google Scholar 

  • Hasson E., Wang I.-N., Zeng L.-W., Kreitman M. and Eanes W. F. 1998 Nucleotide variation in the Triosephosphate isomerase (Tpi) locus ofDrosophila melanogaster andDrosophila simulans.Mol. Biol. Evol. 15, 756–769.

    PubMed  CAS  Google Scholar 

  • Healy M. J., Dumancic M. M. and Oakeshott J. G. 1991 Biochemical and physiological studies of soluble esterases fromDrosophila melanogaster.Biochem. Genet. 29, 365–388.

    Article  PubMed  CAS  Google Scholar 

  • Healy M. J., Dumancic M. M., Cao A. and Oakeshott J. G. 1996 Localization of sequences regulating ancestral and acquired sites of esterase 6 activity inDrosophila melanogaster.Mol. Biol. Evol. 13, 784–797.

    PubMed  CAS  Google Scholar 

  • Hudson R. R. 1983 Properties of a neutral allele model with intragenic recombination.Theor. Popul. Biol. 23, 183–201.

    Article  PubMed  CAS  Google Scholar 

  • Hudson R. R. 1990 Gene genealogies and the coalescent process.Oxf. Surv. Biol. 7, 1–44.

    Google Scholar 

  • Hudson R. R. 2001 Two-locus sampling distributions and their application.Genetics 159, 1805–1817.

    PubMed  CAS  Google Scholar 

  • Hudson R. R. and Kaplan N. 1985 Statistical properties of the number of recombination events in the history of a sample of DNA sequences.Genetics 111, 147–164.

    PubMed  CAS  Google Scholar 

  • Hudson R. R. and Kaplan N. 1988 The coalescent process in models with selection and recombination.Genetics 120, 831–840.

    PubMed  CAS  Google Scholar 

  • Hudson R. R., Boos D. and Kaplan N. L. 1992a A statistical test for detecting geographic subdivision.Mol. Biol. Evol. 9, 138–151.

    PubMed  CAS  Google Scholar 

  • Hudson R. R., Slatkin M. and Maddison W. P. 1992b Estimation of levels of gene flow from DNA sequence data.Genetics 132, 583–589.

    PubMed  CAS  Google Scholar 

  • Hudson R. R., Bailey K., Skarecky D., Kwiatowski J. and Ayala F. J. 1994 Evidence for positive selection in the superoxide dismutase (Sod) region ofDrosophila melanogaster.Genetics 136, 1329–1340.

    PubMed  CAS  Google Scholar 

  • Hudson R. R., Saez A. G. and Ayala F. J. 1997 DNA variation at theSod locus ofDrosophila melanogaster: an unfolding story of natural selection.Proc. Natl. Acad. Sci. USA 94, 7725–7729.

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys A. J., Wilson V. and Thein S. L. 1985 Hypervariable minisatellite regions in human DNA.Nature 314, 67–73.

    Article  PubMed  CAS  Google Scholar 

  • Karotam J., Delves A. C. and Oakeshott J. G. 1993 Conservation and change in structural and 5’ flanking sequences of esterase 6 in siblingDrosophila species.Genetica 88, 1–28.

    Article  Google Scholar 

  • Karotam J., Boyce T. M. and Oakeshott J. G. 1995 Nucleotide variation at the hypervariable esterase 6 isozyme locus ofDrosophila simulans.Mol. Biol. Evol. 12, 113–122.

    PubMed  CAS  Google Scholar 

  • Kelly J. K. 1997 A test of neutrality based on interlocus associations.Genetics 146, 1197–1206.

    PubMed  CAS  Google Scholar 

  • King L. M. 1998 The role of gene conversion in determining sequence variation and divergence in theEst-5 gene family inDrosophila pseudoobscura.Genetics 148, 305–315.

    PubMed  CAS  Google Scholar 

  • Kondrashov F. A., Rogozin I. B., Wolf Y. I. and Koonin E. V. 2002 Selection in the evolution of gene duplication.Genome Biol. 3 (2), research0008.1-0008.9.

  • Korochkin L. I., Ludwig M. Z., Poliakova E. V. and Philinova M. R. 1987 Some molecular genetic aspects of cellular differentiation inDrosophila.Sov. Sci. Rev. F. 1, 411–466.

    Google Scholar 

  • Korochkin L., Ludwig M., Tamarina N., Uspensky I., Yenikolopov G., Khechumijan R.et al. 1990 Molecular genetic mechanisms of tissue-specific esterase isozymes and protein expression inDrosophila. InIsozymes: structure, function, and use in biology and medicine (ed. C. Markert and J. Scandalios) pp. 399–440. Wiley-Liss, New York.

    Google Scholar 

  • Labate J. A., Biermann C. H. and Eanes W. F. 1999 Nucleotide variation at therunt locus inDrosophila melanogaster andDrosophila simulans.Mol. Biol. Evol. 16, 724–731.

    PubMed  CAS  Google Scholar 

  • Lewontin R. C. 1964 The interaction of selection and linkage. I. General considerations; heterotic models.Genetics 49, 49–67.

    PubMed  CAS  Google Scholar 

  • Lowe B., Mathern J. and Hake S. 1992 ActiveMutator elements suppress the knotted phenotype and increase recombination at theKn1-0 tandem duplication.Genetics 132, 813–822.

    PubMed  CAS  Google Scholar 

  • Ludwig M. Z., Tamarina N. A. and Richmond R. C. 1993 Localization of sequences controlling the spatial, temporal, and sex-specific expression of the esterase 6 locus inDrosophila melanogaster adults.Proc. Natl. Acad. Sci. USA 90, 6233–6237.

    Article  PubMed  CAS  Google Scholar 

  • Lukacsovich T. and Waldman A. S. 1999 Suppression of intrachromosomal gene conversion in mammalian cells by small degrees of sequence divergence.Genetics 151, 1559–1568.

    PubMed  CAS  Google Scholar 

  • Lynch M. and Conery J. S. 2000 The evolutionary fate and consequences of duplicate genes.Science 290, 1151–1155.

    Article  PubMed  CAS  Google Scholar 

  • Lynch M., O’Hely M., Walsh B. and Force A. 2001 The probability of preservation of a newly arisen gene duplicate.Genetics 159, 1789–1804.

    PubMed  CAS  Google Scholar 

  • McDonald J. H. 1996 Detecting non-neutral heterogeneity across a region of DNA sequence in the ratio of polymorphism to divergence.Mol. Biol. Evol. 13, 253–260.

    PubMed  CAS  Google Scholar 

  • McDonald J. H. 1998 Improved tests for heterogeneity across a region of DNA sequence in the ratio of polymorphism to divergence.Mol. Biol. Evol. 15, 377–384.

    PubMed  CAS  Google Scholar 

  • McVean G. A. T. 2001 What do patterns of genetic variability reveal about mitochondrial recombination?Heredity 87, 613–620.

    Article  PubMed  CAS  Google Scholar 

  • McVean G., Awadalla P. and Fearnhead P. 2002 A coalescentbased method for detecting and estimating recombination from gene sequences.Genetics 160, 1231–1241.

    PubMed  CAS  Google Scholar 

  • Matic I., Rayssiguier C. and Radman M. 1995 Interspecies gene exchange in bacteria: the role of SOS and mismatch repair systems in evolution of species.Cell 80, 507–515.

    Article  PubMed  CAS  Google Scholar 

  • Mazet F. and Shimeld S. M. 2002 Gene duplication and divergence in the early evolution of vertebrates.Curr. Opin. Genet. Dev. 12, 393–396.

    Article  PubMed  CAS  Google Scholar 

  • Moriyama E. N. and Powell J. R. 1996 Intraspecific nuclear DNA variation inDrosophila.Mol. Biol. Evol. 13, 261–277.

    PubMed  CAS  Google Scholar 

  • Mousset S., Brazier L., Cariou M.-L., Chartois F., Depaulis F. and Veuille M. 2003 Evidence of a high rate of selective sweeps in AfricanDrosophila melanogaster.Genetics 163, 599–609.

    PubMed  CAS  Google Scholar 

  • Myers M., Richmond R. C. and Oakeshott J. G. 1988 On the origins of esterases.Mol. Biol. Evol. 5, 113–119.

    PubMed  CAS  Google Scholar 

  • Oakeshott J. G., Collet C., Phillis R., Nielsen K. M., Russell R. J., Chambers G. K., Ross V. and Richmond R. C. 1987 Molecular cloning and characterization of esterase 6, a serine hydrolase fromDrosophila.Proc. Natl. Acad. Sci. USA 84, 3359–3363.

    Article  PubMed  CAS  Google Scholar 

  • Oakeshott J. G., van Papenrecht E. A., Boyce T. M., Healy M. J. and Russell R. J. 1993 Evolutionary genetics ofDrosophila esterases.Genetica 90, 239–268.

    Article  PubMed  CAS  Google Scholar 

  • Oakeshott J. G., Boyce T. M., Russell R. J. and Healy M. J. 1995 Molecular insights into the evolution of an enzyme; esterase 6 inDrosophila.Trends Ecol. Evol. 10, 103–110.

    Article  Google Scholar 

  • Odgers W. A., Healy M. J. and Oakeshott J. G. 1995 Nucleotide polymorphism in the 5’ promoter region of esterase 6 inDrosophila melanogaster and its relationship to enzyme activity variation.Genetics 141, 215–222.

    PubMed  CAS  Google Scholar 

  • Odgers W. A., Aquadro C. F., Coppin C. W., Healy M. J. and Oakeshott J. G. 2002 Nucleotide polymorphism in theEst6 promoter, which is widespread in derived populations ofDrosophila melanogaster, changes the level of esterase 6 expressed in the male ejaculatory duct.Genetics 162, 785–797.

    PubMed  CAS  Google Scholar 

  • Porter G., Westmoreland J., Priebe S. and Resnick M. A. 1996 Homologous and homeologous intermolecular gene conversion are not differentially affected by mutations in the DNA damage or mismatch repair genesRAD1, RAD50, RAD52, RAD54, PMS1, orMSH2.Genetics 143, 755–767.

    PubMed  CAS  Google Scholar 

  • Preston C. R. and Engels W. R. 1996 P-element-induced male recombination and gene conversion inDrosophila.Genetics 144, 1611–1622.

    PubMed  CAS  Google Scholar 

  • Prince V. E. and Pickett F. B. 2002 Splitting pairs: the diverging fates of duplicated genes.Nat. Rev. Genet. 3, 827–837.

    Article  PubMed  CAS  Google Scholar 

  • Procunier W. S., Smith J. J. and Richmond R. C. 1991 Physical mapping of theesterase-6 locus ofDrosophila melanogaster.Genetica 84, 203–208.

    Article  PubMed  CAS  Google Scholar 

  • Rayssiguier C., Thaler D. S. and Radman M. 1989 The barrier to recombination betweenEscherichia coli andSalmonella typhimurium is disrupted in mismatch repair mutants.Nature 342, 396–401.

    Article  PubMed  CAS  Google Scholar 

  • Richmond R. C., Gilbert D. G., Sheehan K. B., Gromko M. H. and Butterworth F. M. 1980 Esterase 6 and reproduction inDrosophila melanogaster.Science 207, 1483–1485.

    Article  PubMed  CAS  Google Scholar 

  • Richmond R. C., Nielsen K. M., Brady J. P. and Snella E. M. 1990 Physiology, biochemistry and molecular biology of theEst-6 locus inDrosophila melanogaster. InEcological and evolutionary genetics of Drosophila (ed. J. S. F. Barker, W. T. Starmer and R. J. MacIntyre), pp. 273–292. Plenum, New York.

    Google Scholar 

  • Richter B., Long M., Lewontin R. C. and Nitasaka E. 1997 Nucleotide variation and conservation at thedpp locus, a gene controlling early development inDrosophila.Genetics 145, 311–323.

    PubMed  CAS  Google Scholar 

  • Rozas J. and Rozas R. 1999 DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis.Bioinformatics 15, 174–175.

    Article  PubMed  CAS  Google Scholar 

  • Sawyer S. A. 1989 Statistical tests for detecting gene conversion.Mol. Biol. Evol. 6, 526–538.

    PubMed  CAS  Google Scholar 

  • Sawyer S. A. 1999 GENECONV: A computer package for the statistical detection of gene conversion. Distributed by the author. Department of Mathematics, Washington University, St Louis, USA.

    Google Scholar 

  • Seager R. D. and Ayala F. J. 1982 Chromosome interactions inDrosophila melanogaster. I. Viability studies.Genetics 102, 467–483.

    PubMed  CAS  Google Scholar 

  • Selva E. M., New L., Crouse G. F. and Lahue R. S. 1995 Mismatch correction acts as a barrier to homologous recombination inSaccharomyces cerevisiae.Genetics 139, 1175–1188.

    PubMed  CAS  Google Scholar 

  • Shen P. and Huang H. V. 1986 Homologous recombination inEscherichia coli: dependence on substrate length and homology.Genetics 112, 441–457.

    PubMed  CAS  Google Scholar 

  • Shen P. and Huang H. V. 1989 Effect of base pair mismatches on recombination via the RecBCD pathway.Mol. Gen. Genet. 218, 358–360.

    Article  PubMed  CAS  Google Scholar 

  • Sherratt D. J. (ed.) 1995Mobile genetic elements. Oxford University Press, Oxford.

    Google Scholar 

  • Singh R. S. and Long A. D. 1992 Geographic variation in Drosophila: from molecules to morphology and back.Trends Ecol. Evol. 7, 340–345.

    Article  Google Scholar 

  • Strobeck C. 1983 Expected linkage disequilibrium for a neutral locus linked to a chromosomal arrangement.Genetics 103, 545–555.

    PubMed  CAS  Google Scholar 

  • Svoboda Y., Robson M. and Sved J. A. 1996 P-element-induced male recombination can be produced inDrosophila melanogaster by combining end-deficient elements intrans.Genetics 139, 1601–1610.

    Google Scholar 

  • Teeter K., Naeemuddin M., Gasperini R., Zimmerman E., White K. P., Hoskins R. and Gibson G. 2000 Haplotype dimorphism in a SNP collection fromDrosophila melanogaster.J. Exp. Zool. 288, 63–75.

    Article  PubMed  CAS  Google Scholar 

  • Thompson J. D., Higgins D. G. and Gibson T. J. 1994 CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Nucl. Acids Res. 22, 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  • Thornton K. and Long M. 2002 Rapid divergence of gene duplicates on theDrosophila melanogaster X chromosome.Mol. Biol. Evol. 19, 918–925.

    PubMed  CAS  Google Scholar 

  • Treco D. and Arnheim N. 1986 The evolutionarily conserved repetitive sequence d(TG AG)n promotes reciprocal exchange and generates unusual recombinant tetrads during yeast meiosis.Mol. Cell. Biol. 6, 3934–3947.

    PubMed  CAS  Google Scholar 

  • Van de Peer Y., Taylor J. S., Braasch I. and Meyer A. 2001 The ghost of selection past: rates of evolution and functional divergence of anciently duplicated genes.J. Mol. Evol. 53, 436–446.

    Article  PubMed  CAS  Google Scholar 

  • Wagner A. 2002 Asymmetric functional divergence of duplicate genes in yeast.Mol. Biol. Evol. 19, 1760–1768.

    PubMed  CAS  Google Scholar 

  • Waldman A. S. and Liskay R. M. 1987 Differential effects of base-pair mismatch on intrachromosomal versus extrachromosomal recombination in mouse cells.Proc. Natl. Acad. Sci. USA 84, 5340–5344.

    Article  PubMed  CAS  Google Scholar 

  • Wall J. D. 1999 Recombination and the power of statistical tests of neutrality.Genet. Res. 74, 65–79.

    Article  Google Scholar 

  • Watterson G. A. 1975 On the number of segregating sites in genetical models without recombination.Theor. Popul. Biol. 10, 256–276.

    Article  Google Scholar 

  • Yang D. and Waldman A. S. 1997 Fine-resolution analysis of products of intrachromosomal homeologous recombination in mammalian cells.Mol. Cell. Biol. 17, 3614–3628.

    PubMed  CAS  Google Scholar 

  • Yenikolopov G. N., Malevantschuk O. A., Peunova N. I., Sergeev P. V. and Georgiev G. P. 1989Est locus ofDrosophila virilis contains two related genes.Dokl. Acad. Nauk SSSR 306, 1247–1249 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Ayala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balakirev, E., Ayala, F.J. Molecular population genetics of theβ-esterase gene cluster ofDrosophila melanogaster . J Genet 82, 115–131 (2003). https://doi.org/10.1007/BF02715813

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02715813

Keywords

Navigation