Skip to main content
Log in

Evolutionary genetics ofDrosophila esterases

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Over 30 carboxylester hydrolases have been identified inD. melanogaster. Most are classified as acetyl, carboxyl or cholinesterases. Sequence similarities among most of the carboxyl and all the cholinesterases so far characterised fromD. melanogaster and other eukaryotes justify recognition of a carboxyl/cholinesterase multigene family. This family shows minimal sequence similarities with other esterases but crystallographic data for a few non-drosophilid enzymes show that the family shares a distinctive overall structure with some other carboxyl and aryl esterases, so they are all put in one superfamily of /β hydrolases. Fifteen esterase genes have been mapped inD. melanogaster and twelve are clustered at two chromosomal sites. The constitution of each cluster varies acrossDrosophila species but two carboxyl esterases in one cluster are sufficiently conserved that their homologues can be identified among enzymes conferring insecticide resistance in other Diptera. Sequence differences between two other esterases, the EST6 carboxyl esterase and acetylcholinesterase, have been interpreted against the consensus super-secondary structure for the carboxyl/cholinesterase multigene family; their sequence differences are widely dispersed across the structure and include substantial divergence in substrate binding sites and the active site gorge. This also applies when EST6 is compared across species where differences in its expression indicate a difference in function. However, comparisons within and among species where EST6 expression is conserved show that many aspects of the predicted super-secondary structure are tightly conserved. Two notable exceptions are a pair of polymorphisms in the substrate binding site of the enzyme inD. melanogaster. These polymorphisms are associated with differences in substrate interactionsvitro} and demographic data indicate that the alternative forms are not selectively equivalentin vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Aal, Y. A. I., T. N. Hanzlik, B. D. Hammock, L. G. Harshman & G. Prestwich, 1988. Juvenile hormone esterases in two heliothines: kinetics, biochemical and immunogenic characterisation. Comp. Biochem. Physiol. 90B: 117–124.

    Google Scholar 

  • Albuquerque, C. M. R. & M. Napp, 1981. Genetic variability at the esterase 6 locus in natural populations ofDrosophila simulans in relation to environmental heterogeneity. Genetics 98: 399–407.

    PubMed  Google Scholar 

  • Anderson, P. R. & J. G. Oakeshott, 1984. Parallel geographic patterns of allozyme variation in two siblingDrosophila species. Nature 308: 729–731.

    Google Scholar 

  • Arnason, E. & G. K. Chambers, 1987. Macromolecular interaction and the electrophoretic mobility of esterase 5 fromDrosophila pseudoobscura. Biochem. Genet 25: 287–301.

    PubMed  Google Scholar 

  • Arpagaus, M., D. Fournier & J. P. Toutant, 1988. Analysis of acetyl cholinesterase molecular forms during the development ofDrosophila melanogaster. Evidence for the existence of an amphiphilic monomer. Insect Biochem. 18: 539–549.

    Google Scholar 

  • Baker, W. K., 1980. Evolution of the alpha-esterase duplication within the montana subphylad of the virilis species group ofDrosophila. Genetics 94: 733–748.

    Google Scholar 

  • Beckman, L. & F. M. Johnson, 1974. Esterase variations inDrosophila melanogaster. Hereditas 51: 212–220.

    Google Scholar 

  • Berger, E. & R. Canter, 1973. The esterases ofDrosophila. I. The anodal esterases and their possible role in eclosion. Devel. Biol. 33: 48–55.

    Google Scholar 

  • Brady, J. P. & R. C. Richmond, 1990. Molecular analysis of evolutionary changes in the expression ofDrosophila esterases. Proc. Natl. Acad. Sci. USA 87: 8217–8221.

    PubMed  Google Scholar 

  • Brady, J. P. & R. C. Richmond, 1992. An evolutionary model for the duplication and divergence of esterase genes inDrosophila. J. Mol. Evol. 34: 506–521.

    PubMed  Google Scholar 

  • Brady, J. P., R. C. Richmond & J. G. Oakeshott, 1990. Cloning of the esterase 5 locus fromDrosophila pseudoobscura and comparison with its homologue inDrosophila melanogaster. Mol. Biol. Evol. 7: 525–546.

    PubMed  Google Scholar 

  • Campbell, P. M., M. J. Healy & J. G. Oakeshott, 1992. Characterisation of juvenile hormone esterase inDrosophila melanogaster. Insect Biochem. Molec. Biol. 22: 665–677.

    Google Scholar 

  • Cavener, D., D. C. Otteson & T. C. Kaufman, 1986. A rehabilitation of the genetic map of the 84B-D region ofDrosophila melanogaster. Genetics 114: 111–123.

    PubMed  Google Scholar 

  • Choi, K. D., G. H. Jeohn, J. S. Rhee & O. J. Yoo, 1990, Cloning and nucleotide sequence of an esterase gene fromPseudomonas fluorescens and expression of the gene inEschericia coli. Agric. Biol. Chem. 54: 2039–2045.

    PubMed  Google Scholar 

  • Chothia, C. & A. M. Lesk, 1986. The relationship between the divergence of sequence and structure in proteins. EMBO J. 5: 823–826.

    PubMed  Google Scholar 

  • Coates, P. M., M. A. Mestriner & D. A. Hopkinson, 1975. A preliminary genetic interpretation of the esterase isozymes of human tissues. Ann. Hum. Genet. 39: 1–20.

    PubMed  Google Scholar 

  • Cochrane, B. J. & R. C. Richmond, 1979. Studies of esterase-6 inDrosophila melanogaster. II. The genetics and frequency distributions of naturally occuring variants studied by electrophonesis and heat stability criteria. Genetics 93: 461–478.

    PubMed  Google Scholar 

  • Collet, C., K. M. Nielsen, R. J. Russell, M. Karl, J. G. Oakeshott & R. C. Richmond, 1990. Molecular analysis of duplicated esterase genes inDrosophila melanogaster. Molec. Biol. Evol. 7: 9–28.

    PubMed  Google Scholar 

  • Cooke, P. H. & J. G. Oakeshott, 1989. Amino acid polymorphisms for Esterase 6 inDrosophila melanogaster. Proc. Natl. Acad. Sci. USA 86: 1426–1430.

    PubMed  Google Scholar 

  • Cooke, P. H., R. C. Richmond & J. G. Oakeshott, 1987. High resolution electrophoretic variation at the Esterase-6 locus in a natural population ofDrosophila melanogaster. Heredity 59: 259–264.

    PubMed  Google Scholar 

  • Cygler, M., J. D. Schrag & F. Ergan, 1992. Advances in structural understanding of lipases. Biotech. Genet. Eng. Rev. 10: 143–184.

    Google Scholar 

  • Cygler, M., J. D. Schrag, J. C. Sussman, M. Harel, I. Silman, M. K. Gentry & B. P. Doctor, 1993. Relationship between sequence conservation and three dimensional structure in a large family of esterases, lipases and related proteins. Protein Sci. 2: 366–382.

    PubMed  Google Scholar 

  • Danford, N. D. & J. A. Beardmore, 1979. Biochemical properties of esterase 6 inDrosophila melanogaster. Biochem. Genet. 17: 1–22.

    PubMed  Google Scholar 

  • Dayhoff, M. O., R. M. Schwartz & B. C. Orcutt, 1978. A model of evolutionary change in proteins, pp. 345–352 in Atlas of Protein Sequence and Structure, edited by M. O. Dayhoff. The National Biomedical Research Foundation, Silver Spring, Maryland.

    Google Scholar 

  • De la Escalera, S., E.-O. Bockamp, F. Moya, M. Piovant & F. Jiménez, 1990. Characterisation and gene cloning of neurotactin, aDrosophila transmembrane protein related to cholinesterases. EMBO J. 9: 3593–3601.

    PubMed  Google Scholar 

  • Devonshire, A. L., 1977. The properties of a carboxylesterase from the peach-potato aphid,Myzus persicae (Sulz.), and its role in conferring insecticide resistance. Biochem. J. 167: 675–683.

    PubMed  Google Scholar 

  • Di Persio, L. P., R. N. Fontaine & D. Y. Hui, 1990. Identification of the active site serine in pancreatic cholesterol esterase by chemical modification and site-specific mutagenesis. J. Biol. Chem. 265: 16801–16806.

    PubMed  Google Scholar 

  • Di Persio, L. P., R. N. Fontaine & D. Y. Hui, 1991. Site-specific mutagenesis of an essential histidine residue in pancreatic cholesterol esterase. J. Biol. Chem. 266: 4033–4036.

    PubMed  Google Scholar 

  • Di Persio, L. P. & D. Y. Hui, 1993. Aspartic acid 320 is required for optimal activity of rat pancreatic cholesterol esterase. J. Biol. Chem. 268: 300–304.

    PubMed  Google Scholar 

  • East, P. D., 1982. Non-specific esterases ofDrosophila buzzatii, pp. 323–338, in Ecological Genetics and Evolution. The Cactus-Yeast-Drosophila Model System, edited by J. S. F. Barker and W. T. Starmer. Academic Press, New York.

    Google Scholar 

  • East, P. D., 1984. Biochemical Genetics of Two Highly Polymorphic Esterases inDrosophila Buzzatii, 211 pp. PhD Thesis. University of New England, Armidale.

    Google Scholar 

  • East, P. D., A. Graham & G. Whitington, 1990. Molecular isolation and preliminary characterisation of a duplicated esterase locus inDrosophila buzzatii, pp. 389–406 in Ecological and Evolutionary Genetics ofDrosophila, edited by J. S. F. Barker, W. T. Starmer and R. J. MacIntyre. Plenum Press, New York.

    Google Scholar 

  • Ecobichon, D. J. & W. Kalow, 1965. Properties and classification of the soluble esterases of human skeletal and smooth muscle. Canad. J. Biochem. 43: 73–79.

    PubMed  Google Scholar 

  • Enikolopov, G. N., O. A. Malevanchuk, N. I. Peunova, P. V. Sergeev, & G. P. Georgiev, 1989. Est locus inDrosophila virilis contains two related genes. Doklady Akad. Nauk. SSSR 306: 1247–1249.

    Google Scholar 

  • Farmer, J. L. & M. W. Carter, 1989. Properties of partially purified allozymes of esterase 5 ofDrosophila pseudoobscura. Comp. Biochem. Physiol. 93B: 451–458.

    Google Scholar 

  • Farrell, D. H., P. Mikesell, L. A. Actis & J. H. Crosa, 1990. A regulatory gene, angR, of the iron uptake system ofVibrio anguillarum: similarity with phage P22 cro and regulation by iron. Gene 86: 45–51.

    PubMed  Google Scholar 

  • Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.

    Google Scholar 

  • Felsenstein, J., 1991. Phylip. University of Washington, Seattle, Washington.

    Google Scholar 

  • Field, L. M., M. S. Williamson, G. D. Moores & A. L. Devonshire, 1993. Cloning and analysis of the esterase genes conferring insecticide resistance in the peach-potato aphidMyzus persicae (Sulzer). Biochem. J. (in press).

  • Fournier, D., J.-B. Bergé, M.-L. C. de Almeida & C. Bordier, 1988. Acetylcholinesterases fromMusca domestica andDrosophila melanogaster brain are linked to membranes by a glycophospholipid anchor sensitive to an endogenous phospholipase. J. Neurochem. 50: 1158–1163.

    PubMed  Google Scholar 

  • Franklin, I. R., 1981. An analysis of temporal variation at isozyme loci inDrosophila melanogaster, pp. 217–236 in Genetic Studies ofDrosophila Populations, edited by J.B. Gibson and J. G. Oakeshott. The Australian National University Press, Canberra.

    Google Scholar 

  • Game, A. Y. & J. G. Oakeshott, 1989. Variation in the amount and activity of Esterase 6 in a natural population ofDrosophila melanogaster. Heredity 62: 27–34.

    PubMed  Google Scholar 

  • Game, A. Y. & J. G. Oakeshott, 1990. Associations between restriction site polymorphism and enzyme activity variation for esterase 6 inDrosophila melanogaster. Genetics 126: 1021–1032.

    PubMed  Google Scholar 

  • Gan, K. N., A. Smolen, H. W. Eckerson & B. N. la Du, 1991. Purification of human serum paraoxonase/arylesterase: evidence for one esterase catalysing both activities. Drug Metabolism Disposition 19: 100–106.

    Google Scholar 

  • Gibney, G., S. Camp, M. Dionne, K. Macphee-Quigley & P. Taylor, 1990. Mutagenesis of essential functional residues in acetylcholinesterase. Proc. Natl. Acad. Sci. USA 87: 7546–7550.

    PubMed  Google Scholar 

  • Healy, M. J., M. M. Dumancic & J.G. Oakeshott, 1991. Biochemical and physiological studies of soluble esterases fromDrosophila melanogaster. Biochem. Genet. 29: 365–388.

    PubMed  Google Scholar 

  • Heymann, E., 1980. Carboxylesterases and amidases, pp. 291–323 in Enzymatic Basis of Detoxication. Vol II, edited by W.B. Jakoby. Academic Press, New York.

    Google Scholar 

  • Holmes, R. S. & C. J. Masters, 1967. The developmental multiplicity and isoenzyme status of cavian esterases. Biochim. Biophys. Acta 132: 379–399.

    PubMed  Google Scholar 

  • Hjoring, N. & O. Svensmark, 1988. Molecular and catalytic properties of a butyrylesterase from human red cells and brain. Arch. Biochem. Biophys. 260: 351–358.

    PubMed  Google Scholar 

  • Hui, D. Y., K. Hayakawa & J. Oizumi, 1993. Lipoamidase activity in normal and mutagenized pancreatic cholesterol esterase (bile salt stimulated lipase). Biochem J. 291: 65–69.

    PubMed  Google Scholar 

  • Jiang, C., J. B. Gibson & H. Chen, 1989. Genetic differentiation in populations ofDrosophila melanogaster from the People's Republic of China: comparison with patterns on other continents. Heredity 62: 193–198.

    PubMed  Google Scholar 

  • Johnson, F. M., C. G. Kanapi, R. H. Richardson, M. R. Wheeler & W. S. Stone, 1966. An operational classification ofDrosophila esterases for species comparison. Univ. Texas Publ. 6615: 517–532.

    Google Scholar 

  • Johnson, F. M., R. H. Richardson & R. H. Kambysellis, 1968. Isozyme variability in species of the genusDrosophila. III. Qualitative comparison of the esterases ofD. aldrichi andD. mulleri. Biochem. Genet. 1: 239–247.

    PubMed  Google Scholar 

  • Kambysellis, M. P., F. M. Johnson & R. H. Richardson, 1968. Isozyme variability in species of the genusDrosophila. IV. Distribution of the esterases in the body tissues ofD. aldrichi andD. mulleri adults. Biochem. Genet. 1: 249–265.

    PubMed  Google Scholar 

  • Kao, L. R., N. Motoyama & W. C. Dauterman, 1985. The purification and characterisation of esterases from insecticide-resistant and susceptible house flies. Pestic. Biochem. Physiol. 23: 228–239.

    Google Scholar 

  • Karotam, J. & J. G. Oakeshott, 1993. Regulatory aspects of esterase 6 activity variation in siblingDrosophila species. Heredity 71: 41–50.

    PubMed  Google Scholar 

  • Karotam, J., A. C. Delves & J. G. Oakeshott, 1993. Conservation and change in structural and 5′ flanking sequences of esterase 6 in siblingDrosophila species. Genetica 88: 11–28.

    PubMed  Google Scholar 

  • Karotam, J., T. M. Boyce & J. G. Oakeshott, 1994. Nucleotide variation at the hypervariable esterase 6 isozyme locus ofDrosophila simulans. Mol. Biol. Evol. (in press).

  • Korochkin, L. I., M. Z. Ludwig, E. V. Poliakova & M. R. Philinova, 1987. Some molecular genetic aspects of cellular differentiation inDrosophila. Sov. Sci. Rev. F. Physiol. Gen. Biol. 1: 411–466.

    Google Scholar 

  • Korochkin, L., M. Ludwig, N. Tamarina, I. Uspensky, G. Yenikolopov, R. Khechumijan, M. Kopantseva, M. Evgeniev, B. Kuzin, T. Bakayeva, L. Mudjoian, O. Malevantschuk, V. Tsatyian, A. Ivanov & S. Lukianov, 1990. Molecular genetic mechanisms of tissue specific esterase isozymes and protein expression inDrosophila, pp. 399–440 in Isozymes: Structure, Function and Use in Biology and Medicine, edited by C. Markert and J. Scandalios. Wiley-Liss, New York.

    Google Scholar 

  • Korochkin, L. I., N. M. Matveeva & A. Yu. Kerkis, 1973. Subcellular localisation of esterases inD. virilis andD. texana. Dros. Inform. Serv. 50: 130–131.

    Google Scholar 

  • Labate, J., A. Bortoli, A. Y. Game, P. H. Cooke & J. G. Oakeshott, 1989. Further observations on the number and distribution of esterase 6 alleles in populations ofDrosophila melanogaster. Heredity 63: 203–208.

    PubMed  Google Scholar 

  • Lai-Fook, J. & P. H. Smith, 1991. Genetics of the hemolymph esterases ofLucilia cuprina (Diptera: Calliphoridae). Biochem. Genet. 30: 123–130.

    Google Scholar 

  • Loukas, M., 1981. A new esterase locus inD. melanogaster. Dros. Inform. Serv. 56: 85.

    Google Scholar 

  • Ludwig, M. Z., N. A. Tamarina & R. C. Richmond, 1993. Localisation of sequences controlling the spatial, temporal and sex-specific expression of the esterase 6 locus inDrosophila melanogaster adults. Proc. Natl. Acad. Sci. USA 90: 6233–6237.

    PubMed  Google Scholar 

  • Luthi, E., D. R. Love, J. McAnulty, C. Wallace, P. A. Caughey, D. Saul & P. C. Bergquist, 1990. Cloning, sequence analysis and expression of genes encoding xylan-degrading enzymes from the thermophileCaldocellum saccharolyticum. Appl. Env. Microbiol. 56: 1017–1024.

    Google Scholar 

  • Mane, S. D., C. S. Tepper & R. C. Richmond, 1983. Studies of esterase 6 inDrosophila melanogaster. XIII. Purification and characterisation of the two major isozymes. Biochem. Genet. 21: 1019–1040.

    PubMed  Google Scholar 

  • Markovic, O. & H. Jornvall, 1986. Pectinesterase: the primary structure of the tomato enzyme. Eur. J. Biochem. 158: 455–462.

    PubMed  Google Scholar 

  • Mercken, L., M.-J. Simmons, S. Swillens, M. Massaer & G. Vassart, 1985. Primary structure of bovine thyroglobulin deduced from the sequence of its 8431-base complementary DNA. Nature 316: 647–651.

    PubMed  Google Scholar 

  • Miekle, D. B. & R. C. Richmond, 1990. Localisation and longevity of seminal fluid esterase 6 in mated femaleDrosophila melanogaster. J. Insect Physiol. 36: 93–101.

    Google Scholar 

  • Morton, R. A. & R. S. Singh, 1985. Biochemical properties, homology, and genetic variation ofDrosophila non-specific esterases. Biochem. Genet. 23: 959–973.

    PubMed  Google Scholar 

  • Mouchés, C., M. Magnin, J.-P. Bergé, M. de Silvestri, V. Beyssat, N. Pasteur & G. P. Georghiou, 1987. Overproduction of detoxifying esterases in organophosphate-resistantCulex mosquitoes and their presence in other insects. Proc. Natl. Acad. Sci. USA 84: 2113–2116.

    PubMed  Google Scholar 

  • Mulley, J. C., J. W. James & J. S. F. Barker, 1979. Allozyme genotype-environment relationships in natural populations ofDrosophila buzzatii. Biochem. Genet. 17: 105–126.

    PubMed  Google Scholar 

  • Myers, M. A., M. J. Healy & J. G. Oakeshott, 1993. Effects of the residue adjacent to the reactive serine on the substrate interactions of Drosophila esterase 6. Biochem. Genet. 31: 259–278.

    PubMed  Google Scholar 

  • Myers, M. A., M. J. Healy & J. G. Oakeshott, 1994. Effects of four N-linked glycans on thein vivo function of esterase 6 inD. melanogaster (submitted for publication).

  • Narise, S., 1973. Esterase isozymes ofDrosophila virilis: purification and properties of α- and β-esterase isozymes. Japan. J. Genet. 48: 119–132.

    Google Scholar 

  • Narise, S. & J. L. Hubby, 1966. Purification of esterase 5 fromDrosophila pseudoobscura. Biochem. Biophys. Acta. 122: 281–288.

    PubMed  Google Scholar 

  • Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Oakeshott, J. G., G. K. Chambers, J. B. Gibson & D. A. Willcocks, 1981. Latitudinal relationships of esterase-6 and phosphoglucomutase gene frequencies inDrosophila melanogaster. Heredity 47: 385–396.

    PubMed  Google Scholar 

  • Oakeshott, J. G., C. Collet, R. Phillis, K. M. Nielsen, R. J. Russell, G. K. Chambers, V. Ross & R. C. Richmond, 1987. Molecular cloning and characterisation of Esterase 6, a serine hydrolase fromDrosophila. Proc. Natl. Acad. Sci. USA 84: 3359–3363.

    PubMed  Google Scholar 

  • Oakeshott, J. G., P. H. Cooke, R. C. Richmond, A. Bortoli, A. Y. Game & J. Labate, 1989. Molecular population genetics of structural variants of esterase 6 inDrosophila melanogaster. Genome 31: 788–797.

    PubMed  Google Scholar 

  • Oakeshott, J. G., M. J. Healy & A. Y. Game, 1990. Regulatory evolution of β-carboxyl esterases inDrosophila, pp. 359–387 in Ecological and Evolutionary Genetics of Drosophila, edited by J. S. F. Barker, W. T. Starmer and R. J. MacIntyre. Plenum, New York.

    Google Scholar 

  • Oakeshott, J. G., M. Saad, A. Y. Game & M. J. Healy, 1994. Causes and consequences of esterase 6 enzyme activity variation in pre-adultDrosophila melanogaster (submitted for publication).

  • Oakeshott, J. G., S. R. Wilson & W. R. Knibb, 1988. Selection affecting enzyme polymorphisms in confined populations ofDrosophila living in a natural environment. Proc. Natl. Acad. Sci. USA 85: 293–297.

    PubMed  Google Scholar 

  • O'Brien, S. J., 1990. Genetic Maps: Locus maps of Complex Genomes. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Olson, P. F., L. I. Fessler, R. E. Nelson, R. E. Sterne, A. G. Campbell & J. H. Fessler, 1990. Glutactin, a novelDrosophila basement membrane-related glycoprotein with a sequence similarity to serine esterases. EMBO J. 9: 1219–1227.

    PubMed  Google Scholar 

  • Okada, Y. & K. Wakabayashi, 1988. Purification and characterisation of esterases D-1 and D-2 from human erythrocytes. Arch. Biochem. Biophys. 263: 130–136.

    PubMed  Google Scholar 

  • Ollis, D. L., E. Cheah, M. Cygler, B. Dijkstra, F. Frolow, S. M. Franken, M. Harel, S. J. Remington, I. Silman, J. Schrag, J. L. Sussman, K. H. G. Verschueren & A. Goldman, 1992. The α/β hydrolase fold. Protein Eng. 5: 197–211.

    PubMed  Google Scholar 

  • Oppenoorth, F. J. & K. van Asperen, 1960 Allelic genes in the housefly producing modified enzymes that cause organophosphate resistance. Science 132: 298–299.

    PubMed  Google Scholar 

  • Ounissi, H. & P. Courvalin, 1985. Nucleotide sequence of the gene ereA encoding the erythromycin esterase inEschericia coli. Gene 35: 271–278.

    PubMed  Google Scholar 

  • Parker, A. G., R. J. Russell, A. C. Delves & J. G. Oakeshott, 1991. Biochemistry and physiology of esterases in organophosphate-susceptible and-resistant strains of the Australian Sheep Blowfly,Lucilia cuprina. Pestic. Biochem. Physiol. 41: 305–318.

    Google Scholar 

  • Pen, J., H. A. H. Rongen & J. J. Beintema, 1984. Purification and properties of esterase 4 fromDrosophila mojavensis. Biochim. Biophys. Acta. 789: 203–209.

    Google Scholar 

  • Pen, J., J. van Beeumen & J. J. Beintema, 1986. Structural comparison of two esterases fromDrosophila mojavensis isolated by immunoaffinity chromatography. Biochem. J. 278: 691–699.

    Google Scholar 

  • Piovant, M., I. Darboux, Y. Barthalay & R. Hipeau-Jacquotte, 1993.Drosophila neurotactin, an heterophilic cell recognition molecule related to cholinesterases: structural and functional characterisation of the extracellular domain, p. 74. Proc. XXth North Amer. Dros. Conf. (abstract).

  • Procunier, W. S., J. J. Smith & R. C. Richmond, 1991. Physical mapping of the Esterase-6 locus ofDrosophila melanogaster. Genetica 84: 203–208.

    PubMed  Google Scholar 

  • Raftos, D. A. & P. B. Hughes, 1986. Genetic basis of a specific resistance to malathion in the Australian sheep blowfly,Lucilia cuprina (Diptera: Calliphoridae). J. Econ. Entomol. 79: 553–557.

    Google Scholar 

  • Ray, J., J. Knapp, D. Grierson, C. Bird & W. Schuch, 1988. Identification and sequence determination of a cDNA clone for tomato pectin esterase. Eur. J. Biochem. 174: 119–124.

    PubMed  Google Scholar 

  • Raymer, G., J. M. A. Willard & J. L. Schottel, 1990. Cloning, sequencing and regulation of expression of an extracellular esterase gene from the plant pathogenStreptomyces scabies. J. Bacteriol 172: 7020–7026.

    PubMed  Google Scholar 

  • Richmond, R. C., K. M. Nielsen, J. P. Brady & E. M. Snella, 1990. Physiology, biochemistry and molecular biology of theEst6 locus inDrosophila melanogaster, pp. 273–292 in Ecological and Evolutionary Genetics ofDrosophila, edited by J.S.F. Barker, W.T. Starmer and R.J. MacIntyre: Plenum, New York.

    Google Scholar 

  • Rippol, D. R., C. H. Faerman, P. H. Axelsen, I. Silman & J. L. Sussman, 1993. An electrostatic mechanism for substrate guidance down the aromatic gorge of acetylcholinesterase. Proc. Natl. Acad. Sci. USA 90: 5128–5132.

    PubMed  Google Scholar 

  • Ruddle, F. H. & L. Harrington, 1967. Tissue specific isozymes of the mouse (Mus Musculus). J. Exp. Zool. 166: 51–64.

    PubMed  Google Scholar 

  • Russell, R. J., M. M. Dumancic, G.G. Foster, G.L. Weller, M.J. Healy & J.G. Oakeshott, 1990. Insecticide resistance as a model system for studying molecular evolution, pp. 293–314 in Ecological and Evolutionary Genetics ofDrosophila, edited by J.S.F. Barker, W.T. Starmer and R.J. MacIntyre. Plenum, New York.

    Google Scholar 

  • Saad, M., A. Y. Game, M. J. Healy & J. G. Oakeshott, 1994. Associations of esterase 6 allozyme and activity variation with reproductive fitness inDrosophila melanogaster (submitted for publication).

  • Saitou, N. & M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    PubMed  Google Scholar 

  • Sander, D. & R. Schneider, 1991. Database of homology-derived protein structures. Proteins 9: 56–68.

    PubMed  Google Scholar 

  • Sasaki, F., 1974. Esterase isozymes ofDrosophila virilis: developmental aspects of the α- and β-esterases and their distribution in the body parts. Japan. J. Genet. 49: 223–232.

    Google Scholar 

  • Sasaki, F., 1975. Immunological comparison of the α- and β-esterases inDrosophila species. Japan. J. Genet. 50: 217–233.

    Google Scholar 

  • Sasaki, M. & S. Narise, 1978. Molecular weight of esterase isozymes ofDrosophila species. Dros. Inform. Serv. 53: 123–124.

    Google Scholar 

  • Schafer, D. J., D. K. Fredline, W. R. Knibb, M. M. Green & J. S. F. Barker, 1993. Genetics and linkage mapping ofDrosophila buzzatii. Heredity (in press).

  • Schrag, J. D. & M. Cygler, 1993. The 1.8 Å refined structure of lipase fromGeotrichum candidum. J. Mol. Biol. 230: 575–591.

    PubMed  Google Scholar 

  • Sergeev, P. V., G. N. Yenikolopov, N. I. Peunova, B. A. Kuzin, R. A. Khechumian, L. I. Korochkin & G. P. Georgiev, 1993. Regulation of tissue specific expression of the esterase S gene inDrosophila virilis. Nucl. Acids Res 21: 3545–3551.

    PubMed  Google Scholar 

  • Smyth, K. A., V. K. Walker, J. G. Oakeshott & R. J. Russell, 1994. Biochemical and genetic characterisation of malathion resistance inLucilia cuprina (in preparation).

  • Spackman, M. E., J. G. Oakeshott, K.-A. Smyth, K. M. Medveczky & R. J. Russell, 1993. A cluster of esterase genes on chromosome 3R ofDrosophila melanogaster includes homologues of esterase genes conferring insecticide resistance in severalDiptera (submitted for publication).

  • Spierer, P., A. Spierer, w. Bender & D. S. Hogness, 1983. Molecular mapping of genetic and chromomeric units inDrosophila melanogaster. J. Mol. Biol. 168: 35–50.

    PubMed  Google Scholar 

  • Sreerama, L. & P. S. Veerabhadrappa, 1991. Purification and properties of carboxylesterases from the termiteOdentotermes horni. W. Insect Biochem. 21: 833–844.

    Google Scholar 

  • Sussman, J. S., M. Harel, F. Frolor, C. Oefner, A. Goldman, L. Toker & I. Silman, 1991. Atomic structure of acetylcholinesterase fromTorpedo californica: a prototypic acetylcholine-binding protein. Science 253: 872–879.

    PubMed  Google Scholar 

  • Taylor, W. R., 1986. The classification of amino acid conservation. J. Theor. Biol. 119: 205–218.

    PubMed  Google Scholar 

  • Triantaphyllidis, C. D. & C. Christodoulou, 1973. Studies of a homologous gene-enzyme system, esterase C, inDrosophila melanogaster andDrosophila simulans. Biochem. Genet. 8: 383–390.

    PubMed  Google Scholar 

  • Tsuno, K., N. T. Aotsuka & S. Ohba, 1984. Further genetic variation at the esterase loci ofDrosophila virilis. Biochem. Genet. 22: 323–337.

    PubMed  Google Scholar 

  • Van der Meer, J. R., R. I. L. Eggen, A. J. B. Zehnder & W. M. de Vos, 1991. Sequence analysis of thePseudomonas sp. strain P51 tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialisation of catechol 1,2-dioxygenases for chlorinated substrates. J. Bacteriol. 173: 2425–2434.

    PubMed  Google Scholar 

  • Van Tilbeurgh, H., M.-P. Egloff, C. Martinez, N. Rugani, R. Verger & C. Cambillau, 1993. Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography. Nature 362: 814–820.

    PubMed  Google Scholar 

  • Von Deimling, O. & A. Gaa, 1992. Esterase-29 (Es29): biochemical characterisation and control by two independent gene loci of a testosterone-dependent mouse serum esterase. Biochem. Genet. 30: 421–436.

    PubMed  Google Scholar 

  • Von Deimling, O. & B. Wassmer, 1991. Genetic characterisation of esterase 28 (Es28) of the house mouse. Biochem. Genet. 29: 5–9.

    Google Scholar 

  • Vellom, D. C., Z. Radi'c, Y. Li, N. A. Pickering, S. Camp & P. Taylor, 1993. Amino acid residues controlling acetylcholinesterase and butyrylcholinesterase specificity. Biochemistry 32: 12–17.

    PubMed  Google Scholar 

  • White, M. M., S. D. Mane & R. C. Richmond, 1988. Studies of esterase 6 inDrosophila melanogaster. XVIII. Biochemical differences between the slow and fast allozymes. Mol. Biol. Evol. 5: 41–62.

    PubMed  Google Scholar 

  • Ziegler, R., S. Whyard, A. E. R. Downe, G. R. Wyatt & V. K. Walker, 1987. General esterase, malathion carboxylesterase, and malathion resistance inCulex tarsalis. Pestic. Biochem. Physiol. 28: 279–285.

    Google Scholar 

  • Zouros, E. & W. van Delden, 1982. Substrate preference polymorphism at an esterase locus ofDrosophila mojavensis. Genetics 100: 307–314.

    PubMed  Google Scholar 

  • Zouros, E., W. van Delden, R. Odense & H. van Dijk, 1982. An esterase duplication inDrosophila; differences in expression of duplicate loci within and among related species. Biochem. Genet. 20: 929–942.

    PubMed  Google Scholar 

  • Zschunke, F., A. Salmassi, H. Kreipe, F. Buck, M. R. Parwaresch & H. J. Radzun, 1991. cDNA cloning and characterisation of human monocyte/macrophage serine esterase-1. Blood 78: 506–512.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oakeshott, J.G., van Papenrecht, E.A., Boyce, T.M. et al. Evolutionary genetics ofDrosophila esterases. Genetica 90, 239–268 (1993). https://doi.org/10.1007/BF01435043

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01435043

Key words

Navigation