Skip to main content
Log in

Fracture and fatigue crack propagation in a nickel-base metallic glass

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

This work is an investigation of fracture and fatigue in thin ribbons of a nickel-base metallic glass: Ni78Si10B12. The fracture and fatigue crack propagation behavior of this high tensile strength and high toughness amorphous alloy is of interest for two reasons: (1) the alloy, has no normal microstructure, and (2) the alloy shows an unusual form of plastic deformation which proceeds by nucleation and propagation of localized shear bands. On uniaxial tensile loading, failure of uniform ribbons occurs instantaneously at the yield stress by shear rupture through an intense shear band inclined at 55 deg to the loading axis. The development of a local plastic zone at the crack tip in single edge-notched specimens under monotonic tensile loading has been studied by a replication technique. Under plane stress conditions, these plastic zones are dominated by shear bands elongated in the direction of crack extension. Dugdale's “strip yield” model offers a reasonable description of the plastic zone sizes and displacements at the crack tip. The relationship between fatigue crack growth per, cycle,da/dN, and the alternating stress intensity factor, ΔK, has been determined atR=0.1. For growth rates in the range 10−6 through 5×10−4 mm/cycle, the Paris law (with an exponentm∼-2) is obeyed. The mechanism of fatigue crack extension is shown to depend on the deformation microstructure of the alloy. At intermediate growth rates, the plastic zone consists of a number of shear bands similar in shape to the Prandtl slip line field for nonhardening materials. Decohesion along these bands produces undulating fracture morphologies. At near threshold values of ΔK, growth rates deviate from the Paris law producing an extremely low ΔK TH (=0.5 MPa {\(\sqrt m \)}). This is attributed to the ease of shear band nucleation, and a simple geometrical model of crack growth at low ΔK levels is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Masumoto and T. Maddin:Acta Metall., 1971, vol. 19, pp. 725–41.

    Article  CAS  Google Scholar 

  2. C.A. Pampillo:J. Mater. Sci., 1975, vol. 10, pp. 1194–227.

    Article  CAS  Google Scholar 

  3. H.J. Leamy, H.S. Chen, and T.T. Wang:Metall. Trans., 1972, vol. 3, pp. 699–708.

    CAS  Google Scholar 

  4. H.S. Chen, H.J. Leamy, and M.J. O'Brien:Scripta Metall., 1973, vol. 7, pp. 415–20.

    Article  CAS  Google Scholar 

  5. P.G. Zielinski and D.G. Ast:Phil. Mag., 1983, vol. 48A, pp. 811–24.

    Google Scholar 

  6. C.A. Pampillo:Scripta Metall., 1972, vol. 6, pp. 915–18.

    Article  CAS  Google Scholar 

  7. C.A. Pampillo and H.S. Chen:Mater. Sci. Eng., 1974, vol. 13, pp. 181–88.

    Article  CAS  Google Scholar 

  8. S. Takayama and R. Maddin.Metall. Trans. A, 1976, vol. 7A, pp. 1065–72.

    CAS  Google Scholar 

  9. J.C.M. Li:Rapidly Quenched Metals IV, T. Masumoto, ed., Japan Soc. of Metals, Sendai, Japan, 1981, pp. 1335–40.

    Google Scholar 

  10. L.A. Davis and S. Kavesh:J. Mater. Sci., 1975, vol. 10, pp. 453–59.

    Article  CAS  Google Scholar 

  11. L.A. Davis:Metallic Glasses, ASM Seminar, 1976, Niagara Falls, ASM, Metals Park, OH, 1978, pp. 190–206.

  12. J. Megusar, A.S. Argon, and N.J. Grant:Mater. Sci. Eng., 1979, vol. 38, pp. 63–72.

    Article  CAS  Google Scholar 

  13. H. Kimura and T. Masumoto:Metall. Trans. A, 1983, vol. 14A, pp. 709–16.

    Google Scholar 

  14. L.A. Davis:J. Mater. Sci., 1975, vol. 10, pp. 1557–64.

    Article  CAS  Google Scholar 

  15. D.G. Ast and D. Krenitsky:Mater. Sci. Eng., 1976, vol. 23, pp. 241–46.

    Article  CAS  Google Scholar 

  16. L.A. Davis:Metall. Trans. A, 1979, vol. 10A, pp. 235–40.

    CAS  Google Scholar 

  17. V. Ocelik, P. Diko, J.R. Hajko, J. Miskuf, and P. Duhaj:J. Mater. Sci., 1987, vol. 22, pp. 2305–08.

    Article  CAS  Google Scholar 

  18. H. Kimura and T. Masumoto:Scripta Metall., 1975, vol. 9, pp. 211–22.

    Article  CAS  Google Scholar 

  19. Y. Waku and T. Masumoto:Rapidly Quenched Metals IV, T. Masumoto, ed., Japan Soc. of Metals, Sendai, Japan, 1981, pp. 1395–98.

    Google Scholar 

  20. W. Henning, M. Calvo, and F. OsterstockJ. Mater. Sci., 1985, vol. 20, pp. 1889–1900.

    Article  CAS  Google Scholar 

  21. T. Ogura, T. Masumoto, and K. Fukushima:Scripta Metall., 1975, vol. 8, pp. 109–14.

    Google Scholar 

  22. L.A. Davis:J. Mater. Sci., 1976, vol. 11, pp. 711–17.

    Article  CAS  Google Scholar 

  23. H.G. Hillenbrand: Dipl. Ing. Thesis, University of Bochum, Federal Republic of Germany, 1983.

  24. G. Frommeyer and K. Seifert:Z. Metallkde., 1981, vol. 72, pp. 391–95.

    CAS  Google Scholar 

  25. P.J.E. Forsyth:The Physical Basis of Metal Fatigue, American Elsevier Publishing Co., New York, NY, 1969.

    Google Scholar 

  26. T. Ogura, K. Fukushima, and T. Masumoto:Scripta Metall., 1975, vol. 19, pp. 979–83.

    Google Scholar 

  27. T. Ogura, K. Fukushima, and T. Masumoto:Mater. Sci. Eng., 1976, vol. 23, pp. 231–35.

    Article  CAS  Google Scholar 

  28. P.C. Paris and F. Erdogan:J. Basic Eng., (Trans. ASME D), 1963, vol. 85, pp. 528–33.

    CAS  Google Scholar 

  29. T.K. Chaki and J.C.M. Li:Scripta Metall., 1984, vol. 18, pp. 703–08.

    Article  Google Scholar 

  30. A.T. Alpas, L. Edwards, and C.N. Reid:Acta Metall., 1987, vol. 35, pp. 787–96.

    Article  CAS  Google Scholar 

  31. D.P. Rooke and D.J. Cartwright:Compendium of Stress Intensity Factors, HM's Stationery Office, London, 1976.

    Google Scholar 

  32. D.S. Dugdale:J. Mech. Phys. Sol., 1960, vol. 8, pp. 100–04.

    Article  Google Scholar 

  33. C.A. Pampillo and D.E. Polk:Acta Metall., 1974, vol. 22, pp. 741–47.

    Article  CAS  Google Scholar 

  34. A.S. Argon:Acta Metall., 1979, vol. 27, pp. 47–58.

    Article  CAS  Google Scholar 

  35. T. Murata, T. Masumoto, and M. Sakai:Rapidly Quenched Metals III, B. Cantor, ed., Metals Soc., London, 1978, vol. II, pp. 401–04.

    Google Scholar 

  36. Plane Strain Fracture Toughness of Metallic Materials ASTM E399-381, 1981.

  37. G.T. Hahn, A.R. Rosenfield, and M. Sarrate: inInelastic Behavior of Solids, M.F. Kanninen, W.F. Adler, A.R. Rosenfield, and R.I. Jaffee eds., McGraw-Hill, New York, NY, 1970, pp. 673–90.

    Google Scholar 

  38. M.E. Fine and R.O. Ritchie:Fatigue and Microstructure, ASM, Metals Park, OH, 1979, pp. 245–58.

    Google Scholar 

  39. M.C. Lu and S. Weissmann:Mater. Sci. Eng, 1979, vol. 32, pp. 41–53.

    Google Scholar 

  40. M. Graf and F. Hornbogen:Scripta Metall., 1978, vol. 12, pp. 147–50.

    Article  Google Scholar 

  41. S. Suresh and R.O. Ritchie:Fatigue Crack Growth Threshold Concepts, S. Suresh and R.O. Ritchie, eds. AIME, New York, NY, 1984, pp. 227–61.

    Google Scholar 

  42. W. Gerberich, A. Wright, and M.J. Lei:Advances in Fracture Research (ICF6), S.R. Valluri, ed., Pergamon Press, New York, NY, 1984, pp. 2153–66.

    Google Scholar 

  43. J.R. Rice and M.A. Johnson: inInelastic Behavior of Solids, M.F. Kanninen, W.F. Adler, A.R. Rosenfield, and R.I. Jaffee, eds., McGraw-Hill, New York, NY, 1970, pp. 641–70.

    Google Scholar 

  44. N. Levy, P.V. Marcal, W.J. Ostergren, and J.R. Rice:Int. J. of Fract. Mech., 1971, vol. 7, pp. 143–56.

    Google Scholar 

  45. C.J. Beevers:Metal Science, 1977, vol. 11, pp. 362–67.

    CAS  Google Scholar 

  46. A.J. McEvily:Metal Science, 1977, vol. 11, pp. 274–84.

    CAS  Google Scholar 

  47. J.Q. Clayton and J.F. Knott:Metal Science, 1976, vol. 10, pp. 63–71.

    Article  CAS  Google Scholar 

  48. L.P. Pook:The Role of Crack Growth in Metal Fatigue, TMS, London, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A. T. ALPAS, formerly Research Student with the Department of Materials, The Open University, Milton Keynes, MK7 6AA, United Kingdom

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alpas, A.T., Edwards, L. & Reid, C.N. Fracture and fatigue crack propagation in a nickel-base metallic glass. Metall Trans A 20, 1395–1409 (1989). https://doi.org/10.1007/BF02665497

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665497

Keywords

Navigation