Skip to main content

Advertisement

Log in

Tension–Tension Fatigue Property and Damage Behavior in a Metastable In Situ Ti-Based Metallic Glass Composite

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A metastable in situ dendrite Ti-based metallic glass composite (MGC) with an excellent combination of strength, ductility, and work-hardening ability was recently reported. In this work, the tension–tension fatigue behavior of this MGC was investigated for a deep understanding of its overall mechanical property. The stress–life (S–N) data indicated that the fatigue endurance limit of the current MGC was ~ 120 MPa based on the stress amplitude. The fatigue mechanism was revealed by analyzing the microstructural and damage features with X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The slipping deformation dominated the fatigue deformation, and the fatigue crack tended to initiate within the dendrite phase and along the dendrite–matrix interface. By the repeated coalescence of microcracks ahead of the fatigue crack tip, the crack propagated through the metallic glass matrix and dendrites in a straight manner. In addition, it was also found that the martensite laths were generated within the dendrites under high stress levels. Finally, the influence of the loading mode on the fatigue behavior of this MGC was compared in combination with previous data. For the present composition, the fatigue limit under four-point bending fatigue loading was almost three times as high as that under tension–tension fatigue loading, and the reasons for the large discrepancy were clarified.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the first corresponding author upon reasonable request.

References

  1. A. Inoue: Mater. Sci. Eng. A, 1999, vol. 267, pp. 171–83.

    Article  Google Scholar 

  2. A. Inoue: Acta Mater., 2000, vol. 48, pp. 279–306.

    Article  CAS  Google Scholar 

  3. M.E. Launey, R. Busch, and J.J. Kruzic: Scripta Mater., 2006, vol. 54, pp. 483–87.

    CAS  Google Scholar 

  4. C.J. Gilbert, J.M. Lippmann, and R.O. Ritchie: Scripta Mater., 1998, vol. 38, pp. 537–42.

    Article  CAS  Google Scholar 

  5. C.J. Gilbert, V. Schroeder, and R.O. Ritchie: Metall. Mater. Trans. A, 1999, vol. 30, pp. 1739–753.

    Article  Google Scholar 

  6. B.C. Menzel and R.H. Dauskardt: Acta Mater., 2006, vol. 54, pp. 935–43.

    Article  CAS  Google Scholar 

  7. M. Freels, P.K. Liaw, and G.Y. Wang: J. Mater. Res., 2007, vol. 22, pp. 374–81.

    Article  CAS  Google Scholar 

  8. G.Y. Wang, P.K. Liaw, W.H. Peter, B. Yang, M. Freels, Y. Yokoyama, M.L. Benson, B.A. Green, T.A. Saleh, R.L. McDaniels, R.V. Steward, R.A. Buchanan, C.T. Liu, and C.R. Brooks: Intermetallics, 2004, vol. 12, pp. 1219–227.

    Article  CAS  Google Scholar 

  9. M.E. Launey, R. Busch, and J.J. Kruzic: Acta Mater., 2008, vol. 56, pp. 500–10.

    Article  CAS  Google Scholar 

  10. X.D. Wang, S.L. Song, Z.W. Zhu, H.F. Zhang, and X.C. Ren: J. Alloys Compd., 2020, vol. 861, p. 158432.

    Article  Google Scholar 

  11. G.Y. Wang, P.K. Liaw, A. Peker, B. Yang, M.L. Benson, W. Yuan, W.H. Peter, L. Huang, M. Freels, R.A. Buchanan, C.T. Liu, and C.R. Brooks: Intermetallics, 2005, vol. 13, pp. 429–35.

    Article  CAS  Google Scholar 

  12. V. Schroeder, C.J. Gilbert, and R.O. Ritchie: Scripta Mater., 1999, vol. 40, pp. 1057–061.

    Article  CAS  Google Scholar 

  13. S.L. Philo and J.J. Kruzic: Scripta Mater., 2010, vol. 62, pp. 473–76.

    Article  CAS  Google Scholar 

  14. B. Gludovatz, M.D. Demetriou, M. Floyd, A. Hohenwarter, W.L. Johnson, and R.O. Ritchie: Proc. Natl. Acad. Sci. USA, 2013, vol. 110, pp. 18419–8424.

    Article  CAS  Google Scholar 

  15. K.M. Flores, W.L. Johnson, and R.H. Dauskardt: Scripta Mater., 2003, vol. 49, pp. 1181–187.

    Article  CAS  Google Scholar 

  16. J.W. Qiao, S.G. Ma, G.Y. Wang, F. Jiang, P.K. Liaw, and Y. Zhang: Metall. Mater. Trans. A, 2011, vol. 42, pp. 2530–534.

    Article  CAS  Google Scholar 

  17. J.W. Qiao, E.W. Huang, G.Y. Wang, H.J. Yang, W. Liang, Y. Zhang, and P.K. Liaw: Mater. Sci. Eng. A, 2013, vol. 563, pp. 101–05.

    Article  CAS  Google Scholar 

  18. M.E. Launey, D.C. Hofmann, W.L. Johnson, and R.O. Ritchie: Proc. Natl. Acad. Sci. USA, 2009, vol. 106, pp. 4986–991.

    Article  CAS  Google Scholar 

  19. K. Boopathy, D.C. Hofmann, W.L. Johnson, and U. Ramamurty: J. Mater. Res., 2009, vol. 24, pp. 3611–619.

    Article  CAS  Google Scholar 

  20. X.D. Wang, S.L. Song, D.M. Liu, Z.W. Zhu, H.F. Zhang, and X.C. Ren: Intermetallics, 2021, vol. 136, p. 107253.

    Article  CAS  Google Scholar 

  21. Y. Wu, Y.H. Xiao, G.L. Cheng, C.T. Liu, and Z.P. Lu: Adv. Mater., 2010, vol. 22, pp. 2770–773.

    Article  CAS  Google Scholar 

  22. X.L. Fu, G. Wang, Y. Wu, W.L. Song, C.H. Shek, Y. Zhang, J. Shen, and R.O. Ritchie: Int. J. Plast., 2020, vol. 128, p. 102687.

    Article  CAS  Google Scholar 

  23. D.M. Liu, Z.W. Zhu, Z.K. Li, L. Zhang, H.M. Fu, A.M. Wang, H. Li, H.W. Zhang, Y.D. Wang, and H.F. Zhang: Scripta Mater., 2018, vol. 146, pp. 22–6.

    Article  CAS  Google Scholar 

  24. D.M. Liu, S.F. Lin, Z.W. Zhu, B. Zhang, Z.K. Li, L. Zhang, H.M. Fu, A.M. Wang, H. Li, H.W. Zhang, and H.F. Zhang: Mater. Sci. Eng. A, 2018, vol. 732, pp. 148–56.

    Article  CAS  Google Scholar 

  25. R. Wei, L.B. Chen, H.P. Li, and F.S. Li: Intermetallics, 2017, vol. 85, pp. 54–8.

    Article  CAS  Google Scholar 

  26. X.D. Wang, R.T. Qu, Z.Q. Liu, and Z.F. Zhang: J. Alloys Compd., 2017, vol. 695, pp. 2016–022.

    Article  CAS  Google Scholar 

  27. D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, and W.L. Johnson: Nature, 2008, vol. 451, pp. 1085–089.

    Article  CAS  Google Scholar 

  28. J.W. Qiao, H.L. Jia, and P.K. Liaw: Mater. Sci. Eng. R, 2016, vol. 100, pp. 1–69.

    Article  Google Scholar 

  29. G.Y. Wang, P.K. Liaw, W.H. Peter, B. Yang, Y. Yokoyama, M.L. Benson, B.A. Green, M.J. Kirkham, S.A. White, T.A. Saleh, R.L. McDaniels, R.V. Steward, R.A. Buchanan, C.T. Liu, and C.R. Brooks: Intermetallics, 2004, vol. 12, pp. 885–92.

    Article  CAS  Google Scholar 

  30. G.Y. Wang, P.K. Liaw, A. Peker, M. Freels, W.H. Peter, R.A. Buchanan, and C.R. Brooks: Intermetallics, 2006, vol. 14, pp. 1091–097.

    Article  CAS  Google Scholar 

  31. B.C. Menzel and R.H. Dauskardt: Scripta Mater., 2006, vol. 55, pp. 601–04.

    Article  CAS  Google Scholar 

  32. M. Saletore and R. Taggart: Mater. Sci. Eng., 1978, vol. 36, pp. 259–70.

    Article  CAS  Google Scholar 

  33. X.D. Wang, R.T. Qu, Z.Q. Liu, and Z.F. Zhang: Mater. Sci. Eng. A, 2015, vol. 627, pp. 336–39.

    Article  CAS  Google Scholar 

  34. C. Jeon, C.P. Kim, S.H. Joo, H.S. Kim, and S. Lee: Acta Mater., 2013, vol. 61, pp. 3012–026.

    Article  CAS  Google Scholar 

  35. G.H. Duan, M.Q. Jiang, X.F. Liu, L.H. Dai, and J.X. Li: J. Non-Cryst. Solids, 2021, vol. 565, p. 120841.

    Article  CAS  Google Scholar 

  36. G. Chen, J.L. Cheng, and C.T. Liu: Intermetallics, 2012, vol. 28, pp. 25–33.

    Article  Google Scholar 

  37. S.F. Lin, S.F. Ge, Z.W. Zhu, W. Li, Z.K. Li, H. Li, H.M. Fu, A.M. Wang, Y.X. Zhuang, and H.F. Zhang: Appl. Mater. Today, 2021, vol. 22, p. 100944.

    Article  Google Scholar 

  38. T. Zhang, H.Y. Ye, J.Y. Shi, and H.J. Yang: J. Alloys Compd., 2014, vol. 583, pp. 593–97.

    Article  CAS  Google Scholar 

  39. X.H. Sun, J.W. Qiao, Z.M. Jiao, Z.H. Wang, H.J. Yang, and B.S. Xu: Sci. Rep., 2015, vol. 5, p. 13964.

    Article  CAS  Google Scholar 

  40. Y.J. Huang, J.C. Khong, T. Connolley, and J. Mi: Appl. Phys. Lett., 2014, vol. 104, p. 031912.

    Article  Google Scholar 

  41. R.L. Narayan, P.S. Singh, D.C. Hofmann, N. Hutchinson, K.M. Flores, and U. Ramamurty: Acta Mater., 2012, vol. 60, pp. 5089–100.

    Article  CAS  Google Scholar 

  42. Y.P. Jiang, K. Qiu, L.G. Sun, and Q.Q. Wu: Metall. Mater. Trans. A, 2018, vol. 49, pp. 417–24.

    Article  CAS  Google Scholar 

  43. D. Farkas, M. Willemann, and B. Hyde: Phys. Rev. Lett., 2005, vol. 94, p. 165502.

    Article  CAS  Google Scholar 

  44. Y. Yang, B. Imasogie, G.J. Fan, P.K. Liaw, and W.O. Soboyejo: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1145–156.

    Article  Google Scholar 

  45. J.N. Dastgerdi, G. Marquis, S. Sankaranarayanan, M. Sankaranarayanan, and M. Gupta: Compos. Struct., 2016, vol. 153, pp. 782–90.

    Article  Google Scholar 

  46. Y.B. Ju, M. Koyama, T. Sawaguchi, K. Tsuzaki, and H. Noguchi: Acta Mater., 2016, vol. 112, pp. 326–36.

    Article  CAS  Google Scholar 

  47. K. Suzuki, M. Koyama, S. Hamada, K. Tsuzaki, and H. Noguchi: Int. J. Fatigue, 2020, vol. 133, p. 105418.

    Article  CAS  Google Scholar 

  48. M. Goto, T. Yamamoto, S.Z. Han, S.H. Lim, S. Kim, J.H. Ahn, S.J. Lee, T. Yakushiji, and J. Lee: Mater. Sci. Eng. A, 2020, vol. 788, p. 139569.

    Article  CAS  Google Scholar 

  49. X.M. Zhu, C.Y. Gong, Y.F. Jia, R.Z. Wang, C.C. Zhang, Y. Fu, S.T.G. Tu, and X.C. Zhang: J. Mater. Sci. Technol., 2019, vol. 35, pp. 1607–17.

    Article  CAS  Google Scholar 

  50. K. Habib, M. Koyama, T. Tsuchiyama, and H. Noguchi: Mater. Charact., 2019, vol. 158, p. 109930.

    Article  CAS  Google Scholar 

  51. Y.S. Oh, C.P. Kim, S. Lee, and N.J. Kim: Acta Mater., 2011, vol. 59, pp. 7277–286.

    Article  CAS  Google Scholar 

  52. C.P. Kim, Y.S. Oh, S. Lee, and N.J. Kim: Scripta Mater., 2011, vol. 65, pp. 304–07.

    Article  CAS  Google Scholar 

  53. X.D. Wang, S.L. Song, Z.W. Zhu, H.F. Zhang, and X.C. Ren, Fatigue Fract. Eng. Mater. Struct., 2022, vol. 45, pp. 2010–22.

    Article  CAS  Google Scholar 

  54. G.Y. Wang, D.C. Qiao, Y. Yokoyama, M. Freels, A. Inoue, and P.K. Liaw: J. Alloys Compd., 2009, vol. 483, pp. 143–45.

    Article  CAS  Google Scholar 

  55. Y. Yue, R. Wang, D.Q. Ma, J.F. Tian, X.Y. Zhang, Q. Jing, M.Z. Ma, and R.P. Liu: Intermetallics, 2015, vol. 60, pp. 86–91.

    Article  CAS  Google Scholar 

  56. S.E. Naleway, R.B. Greene, B. Gludovatz, N.K.N. Dave, R.O. Ritchie, and J.J. Kruzic: Metall. Mater. Trans. A, 2013, vol. 44, pp. 5688–693.

    Article  CAS  Google Scholar 

  57. J. Mu, Z.W. Zhu, R. Su, Y.D. Wang, H.F. Zhang, and Y. Ren: Acta Mater., 2013, vol. 61, pp. 5008–017.

    Article  CAS  Google Scholar 

  58. M. Song, S.Y. He, K. Du, Z.Y. Huang, T.T. Yao, Y.L. Hao, S.J. Li, R. Yang, and H.Q. Ye: Acta Mater., 2016, vol. 118, pp. 120–28.

    Article  CAS  Google Scholar 

  59. H.L. Jia, G.Y. Wang, S.Y. Chen, Y.F. Gao, W.D. Li, and P.K. Liaw: Prog. Mater. Sci., 2018, vol. 98, pp. 168–248.

    Article  CAS  Google Scholar 

  60. Z.Q. Song, Q. He, E. Ma, and J. Xu: Acta Mater., 2015, vol. 99, pp. 165–75.

    Article  CAS  Google Scholar 

  61. X.D. Wang, S.L. Song, P. Liu, Z.W. Zhu, H.F. Zhang, and X.C. Ren: J. Non-Cryst. Solids, 2020, vol. 536, p. 119988.

    Article  CAS  Google Scholar 

  62. Z.D. Sha, W.H. Lin, L.H. Poh, G.C. Xing, Z.S. Liu, T.J. Wang, and H.J. Gao: Appl. Mech. Rev., 2020, vol. 72, p. 050801.

    Article  Google Scholar 

  63. T. Zhai, Y.G. Xu, J.W. Martin, A.J. Wilkinson, and G.A.D. Briggs: Int. J. Fatigue, 1999, vol. 21, pp. 889–94.

    Article  Google Scholar 

  64. B.C. Menzel and R.H. Dauskardt: Scripta Mater., 2007, vol. 57, pp. 69–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Beijing Natural Science Foundation under Grant No. 2222066 and National Natural Science Foundation of China (NSFC) under Grant No. 52101065.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodi Wang or Xuechong Ren.

Ethics declarations

Conflict of interest

All authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S., Wang, X., Zhu, Z. et al. Tension–Tension Fatigue Property and Damage Behavior in a Metastable In Situ Ti-Based Metallic Glass Composite. Metall Mater Trans A 54, 358–370 (2023). https://doi.org/10.1007/s11661-022-06890-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06890-0

Navigation