Skip to main content
Log in

High-temperature deformation processing of Ti-24Al-20Nb

  • Mechanical Behavior
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Power dissipation maps have been generated in the temperature range of 900 ‡C to 1150 ‡C and strain rate range of 10-3 to 10 s-1 for a cast aluminide alloy Ti-24Al-20Nb using dynamic material model. The results define two distinct regimes of temperature and strain rate in which efficiency of power dissipation is maximum. The first region, centered around 975 ‡C/0.1 s-1, is shown to correspond to dynamic recrystallization of the α2 phase and the second, centered around 1150 ‡C/0.001 s-1, corresponds to dynamic recovery and superplastic deformation of the β phase. Thermal activation analysis using the power law creep equation yielded apparent activation energies of 854 and 627 kJ/mol for the first and second regimes, respectively. Reanalyzing the data by alternate methods yielded activation energies in the range of 170 to 220 kJ/mol and 220 to 270 kJ/mol for the first and second regimes, respectively. Cross slip was shown to constitute the activation barrier in both cases. Two distinct regimes of processing instability—one at high strain rates and the other at the low strain rates in the lower temperature regions—have been identified, within which shear bands are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Muraleedharan: Ph.D. Thesis, Banaras Hindu University, Varanasi, India, 1995.

    Google Scholar 

  2. K. Muraleedharan, A.K. Gogia, T.K. Nandy, D. Banerjee, and S. Lele:Metall. Trans. A, 1992, vol. 23A, pp. 401–15.

    CAS  Google Scholar 

  3. S. Krishnan, T.K. Nandy, and D. Banerjee: Defence Metallurgical Research Laboratory, Hyderabad, India, [unpublished research,] 1994.

  4. S.L. Semiatin, K.A. Lark, D.R. Barker, V. Seetharaman, and B. Marquardt:Metall. Trans. A, 1992, vol. 23A, pp. 295–305.

    CAS  Google Scholar 

  5. M. Long and H.J. Rack:Mater. Sci. Eng., 1993, vol. A170, pp. 215–26.

    CAS  Google Scholar 

  6. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Baker:Metall. Trans. A, 1984, vol. 15A, pp. 1883–92.

    CAS  Google Scholar 

  7. P.K. Sagar, D. Banerjee, and Y.V.R.K. Prasad:Mater. Sci. Eng. A, 1994, vol. 117, pp. 185–97.

    Google Scholar 

  8. T.K. Nandy, R.S. Mishra, and D. Banerjee:Scripta Metall. Mater., 1993, vol. 28, pp. 569–74.

    Article  CAS  Google Scholar 

  9. D. Banerjee, R.G. Rowe, and E.L. Hall:High Temperature Ordered Intermetallic Alloys—IV, Materials Research Society Symposia Proceedings, L.A. Johnson, D.P. Pope, and J.O. Stiegler, eds., 1991, vol. 213, pp. 285–90.

  10. H.L. Gegel, J.C. Malas, S.M. Doraivelu, and V.A. Shende: Materials Research Society, Pittsburgh, PA,Metals Handbook, 1987, vol. 14, pp. 417–38.

    Google Scholar 

  11. Y.V.R.K. Prasad:Ind. J. Technol., 1990, vol. 28, pp. 435–51.

    CAS  Google Scholar 

  12. A.K. Kalyan Kumar: Master's Thesis, Indian Institute of Science, Bangalore, India, 1987.

    Google Scholar 

  13. C. Huang, T.A. Dean, and M.H. Loretto:Mater. Sci. Eng., 1995, vol. A191, pp. 39–47.

    CAS  Google Scholar 

  14. G. Schock: inDislocation in Solids, North Holland Publishing Company, Amsterdam, F. Nabarro, ed., 1980, vol. 3, pp. 63–163.

    Google Scholar 

  15. U.F. Kocks, A.S. Argon, and M.F. Ashby:Progress of Material Science, Pergamon Press, New York, NY, 1975, pp. 110–70.

    Google Scholar 

  16. W. Cho, A.W. Thomson, and J.C. Williams:Metall. Trans., 1990, vol. 21A, pp. 641–51.

    CAS  Google Scholar 

  17. M.G. Mendiratta and H.A. Lipsitt:J. Mater. Sci., 1980, vol. 15, pp. 2985–90.

    Article  CAS  Google Scholar 

  18. R.S. Mishra and D. Banerjee:Mater. Sci. Eng., 1990, vol. 130, pp. 151–64.

    Article  Google Scholar 

  19. P. Griffiths and C. Hammond:Titanium Science and Technology, Proc. Symp., R.I. Jaffee, and H.M. Burte, eds., TMS-AIME, Warrendale, PA, 1972, pp. 1155–67.

    Google Scholar 

  20. P.K. Sagar, D. Banerjee, and Y.V.R.K. Prasad: Defence Metallurgical Research Laboratory, Hyderabad, India, 1995, [unpublished work.]

  21. S.A. Court, J.P.A. Lofvander, M.H. Loretto, and H.L. Fraser:Phil. Mag. A, 1990, vol. 61, pp. 109–39.

    CAS  Google Scholar 

  22. D. Banerjee:Phil. Mag. A, 1995, vol. 72(6), pp. 1559–87.

    CAS  Google Scholar 

  23. S.L. Semiatin and G.D. Lahoti:Metall. Trans. A, 1981, vol. 12A, pp. 1705–18.

    Google Scholar 

  24. S.L. Semiatin and G.D. Lahoti:Metall. Trans. A, 1981, vol. 12A, pp. 1719–28.

    Google Scholar 

  25. S.L. Semiatin and G.D. Lahoti:Metall. Trans. A, 1982, vol. 13A, pp. 275–88.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with the Defence Metallurgical Research Laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sagar, P.K., Banerjee, D., Muraleedharan, K. et al. High-temperature deformation processing of Ti-24Al-20Nb. Metall Mater Trans A 27, 2593–2604 (1996). https://doi.org/10.1007/BF02652353

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652353

Keywords

Navigation