Skip to main content
Log in

Effect of Initial Microstructure on High-Temperature Dynamic Deformation of Ti-6Al-4V Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

One of the attractive properties of Ti-6Al-4V alloy is control of microstructure through heat treatment to vary the mechanical properties. In this study, three different microstructures, Lamellar, Widmanstätten, and Martensitic morphologies, were created through heat treatment at a post-β transus temperature followed by cooling at different rates. With faster cooling rates, the microstructures evolved finer lamellae, smaller colony sizes, and thinner grain boundary layers. High-temperature dynamic compression was conducted on these specimens at a strain rate of 1000 s−1 and temperatures in the range of 23 °C to 1045 °C. Flow stresses decreased linearly with colony size and grain boundary layer thickness, but increased with inverse square root of lamellar thickness. This strong correlation of flow stress to several microstructural feature sizes indicated multiple modes of deformation. All three microstructures showed identical thermal softening. The softening rate was intensified at elevated temperatures due to hcp → bcc allotropic phase transformation. Gangireddy modification to Johnson–Cook model could account for this augmented softening and the modified J–C model predicted the three microstructures to follow a similar thermal softening coefficient m = 0.8. The kinetics of phase transformation appear to be very rapid irrespective of the microstructural differences in the Ti-6Al-4V alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. R. Reda, A.A. Nofal, A.H.A. Hussein, J. Metall. Eng. ME., 2013, vol 2, pp. 48-55.

    Google Scholar 

  2. T. Mohandas, D. Banerjee, V.V.K. Rao, Mater. Sci. Eng. A, 1998, vol. 254, pp. 147–154,

    Article  Google Scholar 

  3. R. Filip, K. Kubiak, W. Ziaja, and J. Sieniawski, J. Mater. Process. Technol., 2003, vol. 133, pp. 84–89.

    Article  Google Scholar 

  4. A. Attanasio, M. Gelfi, A.Pola, E. Ceretti, C. Giardini, Materials, 2013, vol. 6, pp. 4268-4283.

    Article  Google Scholar 

  5. S. Cedergren, G. Sjöberg, G. Petti, Procedia CIRP, 2013, vol. 12, pp. 55-60.

    Article  Google Scholar 

  6. S.J. Sun, M.Brandt, J.Mo, Adv. Mater. Res., 2013, vol.690-693, pp. 2437-2441.

    Article  Google Scholar 

  7. M. Nouari, H. Makich, Metals, 2014, vol. 4, pp. 335-358.

    Article  Google Scholar 

  8. K.A. Hartley, J. Duffy, R.H. Hawley, J. Mech. Phys. Solids, 1987 vol. 35, pp. 283-301

    Article  Google Scholar 

  9. D.K. Kim, S.Y. Kang, S. Lee, K.J. Lee, Metall. Mater. Trans A, 1999, vol. 30A, pp. 81-92.

    Article  Google Scholar 

  10. H.J. Ryu, S.H. Hong, D. K. Kim, S. Lee, Metals and Materials., 1998, vol. 4, pp. 367-371.

    Google Scholar 

  11. A. Marchand, J. Mech. Phys. Solids., 1988, vol. 35, pp. 252-261.

    Google Scholar 

  12. D.G. Lee, S. Lee, C.S. Lee, S. Hur, Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2541-2548.

    Article  Google Scholar 

  13. D.G. Lee, S. Kim. S. Lee, C.S. Lee, Metall. Mater. Trans. A, 2001, vol. 32A, pp. 315-324.

    Article  Google Scholar 

  14. D.G. Lee, S. Lee, C.S. Lee, Mater. Sci. Eng. A, 2004, vol. 366, pp. 25-37

    Article  Google Scholar 

  15. A.W. Johnson, C.W. Bull, K.S. Kumar, C.L. Briant, Metall. Mater. Trans. A, 2003, vol. 34A, pp. 295- 306

    Article  Google Scholar 

  16. S.P. Mates, R. Rhorer, E. Whitenton, T. Burns, D. Basak. Exp. Mech., 2008, vol. 48, pp. 799-807.

    Article  Google Scholar 

  17. M. Donachie: Titanium: A Technical Guide, 2nd ed., ASM International, 2000, Chap. 3, pp. 13–25.

  18. S. Gangireddy, S.P. Mates, J. Dyn. Behav. Mat., 2017, vol. 3, pp. 557-574.

    Article  Google Scholar 

  19. D. Basak, H. W. Yoon, R. Rhorer, T. Burns, AIP Conf. Proc. 2003, vol. 684, pp. 753-759.

    Article  Google Scholar 

  20. D. Basak, R.A. Overfelt, D. Wang, Int. J. Thermophys., 2004, vol. 252, pp. 561-574.

    Article  Google Scholar 

  21. E.S.K. Menon, H.I. Aaronson, Metall. Mater. Trans. A, 1986, vol. 17A,pp. 1703-1715

    Article  Google Scholar 

  22. T. Ahmed, H.J. Rack, Mater. Sci. Eng. A, 1998, vol. 243,pp. 206-211

    Article  Google Scholar 

  23. G. Lutjering, Mater. Sci. Eng. A, 1998, vol. 243, pp. 32-45

    Article  Google Scholar 

  24. F.S. Lin, E.A. Starke, S.B. Chakrabortty, A. Gylser, Metall. Mater. Trans. A, 1984, vol. 15, pp. 1229-1246

    Article  Google Scholar 

  25. F.J. Gil, M.P. Ginebra, J.M. Manero, J. Alloys Compd., 2001, vol. 329, pp. 142-152.

    Article  Google Scholar 

  26. R.S. Sandala: Ph.D. Thesis, Deformation Mechanisms of Two-Phase Titanium Alloys, University of Manchester UK (2013), pp. 95–105

  27. A.A. Antonysamy: Ph.D. Thesis, Microstructure, Texture and Mechanical Property Evolution during Additive Manufacturing of Ti6Al4V Alloy for Aerospace Applications, University of Manchester UK, 2012, pp. 290–94.

  28. M.A. Meyers, G. Subhash, B.K. Krad, L. Prasad, Mech. Mater., 1994, vol. 17, pp. 175-193.

    Article  Google Scholar 

  29. Q. Li, Y.B. Xu, M.N. Bassim, J. Mater. Process. Technol., 2004, vol. 155, pp. 1889-1892.

    Article  Google Scholar 

  30. K.S. Chan, C.C. Wojcik, D.A. Koss, Metall. Mater. Trans. A, 1981, vol. 12A, pp.1899-1907.

    Article  Google Scholar 

  31. J.M. Manero, F.J. Gil, J.A. Planell, Mater., 2000, vol. 48, pp. 3353-3359.

    Google Scholar 

  32. T. Seshacharyulu, S. C. Medeiros, W. G. Frazier, and Y. V. R. K. Prasad, Mater. Sci. Eng. A, 2002, vol. 325, pp. 112–125.

    Article  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the support of Dr. Steven Mates and NIST Mechanical Performance Group as well as James Warren, NIST Technical Program Director for Materials Genomics. I also acknowledge the valuable assistance of Mr. Eran Vax and Mr. Eli Marcus of the Nuclear Research Center, Negev, Israel, for many improvements to the electrical heating control system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sindhura Gangireddy.

Additional information

Manuscript submitted February 27, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangireddy, S. Effect of Initial Microstructure on High-Temperature Dynamic Deformation of Ti-6Al-4V Alloy. Metall Mater Trans A 49, 4581–4594 (2018). https://doi.org/10.1007/s11661-018-4774-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4774-1

Navigation