Skip to main content
Log in

Spontaneous acquisition of tumorigenicity and invasiveness by mouse lens explant cells during culture in vitro

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The lens of the eye is one of the rare organs in which tumors do not occur spontaneously. It therefore appeared to us that lens cells would not present the background of spontaneous transformation toward malignancy found with many other cell cultures. We have cultured C3H/HeA mouse lens explant (MLE) cells for 70 wk an analyzed changes in malignancy-related phenotypes in function of the number of passages.

In vitro, we studied morphology, colony forming efficiency on tissue culture plastic substrate (CFEtc) and in soft agar, population doubling time, saturation density, and invasiveness into precultured chick heart fragments. In vivo, tumorigenicity, invasion, and metastasis were analyzed after injection of cell suspensions subcutaneously and intraperitoneally, after implantation of cells aggregated to collagen sponges under the renal capsule and after implantation of cell aggregates subcutaneously into the tail and into the pinna.

The CFEtc, population doubling time, and saturation density increased as the number of passages of culture in vitro increased, but colony formation in soft agar was never observed. MLE cells till passage 16 were not invasive in vitro, but hereafter consistently were found to be invasive. After about 17 passages, corresponding to 25 wk of culture, MLE cells acquired the capacity to form tumors in syngeneic mice. These tumors were invasive but metastases were not observed, We concluded that MLE cells acquired in an apparently spontaneous way a number of malignancy-related phenotypes, without, however, reaching the stage of metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert, D. M.; Rabson, A. S.; Grimes, P. A., et al. Neoplastic transformationin vitro of hamster lens epithelium by simian virus 40. Science 164:1077–1078; 1969.

    Article  PubMed  CAS  Google Scholar 

  2. Attia, M. A.; Weiss, D. W. Immunology of spontaneous mammary carcinomas in mice. V. Acquired tumour resistance and enhancement in strain A mice infected with mammary tumour virus. Cancer Res. 26:1787–1800; 1966.

    PubMed  CAS  Google Scholar 

  3. Baserga, R.; Baum, J. Induction of blood-borne metastases by tumour transplantation in the tail of mice. Cancer Res. 15:52–58; 1955.

    PubMed  CAS  Google Scholar 

  4. Bloemendal, H.; Lenstra, J. A.; Dodemont, H., et al. SV40-transformed hamster lens epithelial cells: a novel system for the isolation of cytoskeletal messenger RNAs and their translation products. Exp. Eye Res. 31:513–525; 1980.

    Article  PubMed  CAS  Google Scholar 

  5. Bogden, A. E.; Hasdell, P. M.; LePage, D. J., et al. Growth of human tumour xenografts implanted under the renal capsule of normal immunocompetent mice. Exp. Cell Biol. 47:281–293; 1979.

    PubMed  CAS  Google Scholar 

  6. Boghaert, E. R.; Distelmans, W.; Van Ginckel, R., et al. Numerical evaluation of the kidney invasion test. Invasion & Metastasis 7:230–241; 1987.

    CAS  Google Scholar 

  7. Bracke, M. E.; Van Cauwenberge, R.; Mareel, M. M. (+)-Catechin inhibits the invasion of malignant fibrosarcoma cells into chick heartin vitro. Clin. Exp. Metastasis 2:161–170; 1984.

    Article  PubMed  CAS  Google Scholar 

  8. Brett, J. G.; Godman, G. C.; Miller, D. A. Phenotypic and karyotypic transitions in the spontaneous transformation of a rat cell line. Tissue & Cell 18:27–49; 1986.

    Article  CAS  Google Scholar 

  9. Butel, J. S.; Wong, C.; Medina, D. Transformation of mouse mammary epithelial cells by papova virus SV40. Exp. Mol. Pathol. 40:79–108; 1984.

    Article  PubMed  CAS  Google Scholar 

  10. Chandrasekharam, N. N.; Suraj, P. B. Maintenance of the synthesis of æB-crystallin and progressive expression of\/Bp-crystallin in human fetal lens epithelial cells in culture. Dev. Biol. 130:402–405; 1988.

    Article  Google Scholar 

  11. Coopman, P.; Van Roy, F.; Dragonetti, C., et al. Tumorigenicity, invasiveness and metastatic capability of FR3T3 rat cells before and after transfection with bovine papilloma virus type 1 DNA. Clin. Exp. Metastasis 7(1):69–84; 1989.

    Article  PubMed  CAS  Google Scholar 

  12. Courtois, Y.; Simonneau, L.; Tassin, J., et al. Spontaneous transformation of bovine lens epithelial cells. Differentiation 10:23–30; 1978.

    Article  PubMed  CAS  Google Scholar 

  13. Creighton, M. O.; Mousa, G. Y.; Trevithick, J. R. Differentiation of rat lens epithelial cells in tissue culture. Differentiation 6:155–167; 1976.

    Article  PubMed  CAS  Google Scholar 

  14. Eisenhauer, D. A.; Berger, J. J.; Peltier, C. Z., et al. Protease activities in cultured beef lens epithelial cells peak and then decline upon progressive passage. Exp. Eye Res. 46:579–590; 1988.

    Article  PubMed  CAS  Google Scholar 

  15. Fidler, I. J. Tumour heterogeneity and the biology of cancer invasion and metastasis. Cancer Res. 38:2651–2660; 1978.

    PubMed  CAS  Google Scholar 

  16. Freshney, R. I., editor. Culture of animal cells. A manual of basic technique. New York: Alan R. Liss, Inc.; 1983.

    Google Scholar 

  17. Gao, J.; Van Roy, F.; Messiaen, L., et al. Pathology of tumours produced in syngeneic Fischer rats by fibroblast-like cells before and after transfection with oncogenes. Pathol. Res. Pract. 182:48–57; 1987.

    PubMed  CAS  Google Scholar 

  18. Greig, R. G.; Koestler, T. P.; Trainer, D. L., et al. Tumorigenic and metastatic properties of “normal” and ras-transfected NIH/3T3 cells. Proc. Natl. Acad. Sci. USA 82:3698–3701; 1985.

    Article  PubMed  CAS  Google Scholar 

  19. Griep, A. E.; Kuwabara, T.; Lee, E. J., et al. Perturbed development of the mouse lens by polyomavirus large T antigen does not lead to tumor formation. Genes & Dev. 3:1075–85; 1989.

    CAS  Google Scholar 

  20. Hamada, Y.; Watanabe, K.; Aoyama, H., et al. Differentiation and dedifferentiation of rat lens epithelial cells in short- and long-term cultures. Dev. Growth & Differ. 21:205–220; 1979.

    Article  Google Scholar 

  21. Hill, L.; Milas, L. The proportion of stem cells in murine tumors. Int. J. Radiat. Oncol. Biol. Phys. 16:513–518; 1989.

    PubMed  CAS  Google Scholar 

  22. Kaighn, M. E.; Narayan, S. K.; Ohnuki, Y. et al. Differential properties among clones of simian virus 40-transformed epithelial cells. Carcinogenesis 1:635–645; 1980.

    Article  PubMed  CAS  Google Scholar 

  23. Khillan, J. S.; Oskarsson, M. K.; Propst, F., et al. Defects in lens fiber differentiation are linked to c-mos overexpression in transgenic mice. Genes & Dev. 1:1327–1335; 1987.

    CAS  Google Scholar 

  24. Kyriazis, A. A.; Kyriazis, A. P. Preferential sites of growth of human tumours in nude mice following subcutaneous transplantation. Cancer Res. 40:4509–4511; 1980.

    PubMed  CAS  Google Scholar 

  25. Mahon, K. A.; Chepelinsky, A. B.; Khillan, J. S., et al. Oncogenesis of the lens in transgenic mice. Science 235:1622–1628; 1987.

    Article  PubMed  CAS  Google Scholar 

  26. Mann, I. Induction of an experimental tumour of the lens. Br. J. Cancer 1:63–67; 1947.

    Google Scholar 

  27. Mareel, M.; Kint, J.; Meyvisch, C. Methods of study of the invasion of malignant C3H-mouse fibroblasts into embryonic chick heartin vitro. Virchows Arch. B Cell Pathol. 30:95–111; 1979.

    CAS  Google Scholar 

  28. Mareel, M. M.; De Bruyne, G. K.; Vandesande, F., et al. Immunohistochemical study of embryonic chick heart invaded by malignant cells in three-dimensional culture. Invasion & Metastasis 1:195–204; 1981.

    CAS  Google Scholar 

  29. Mareel, M. M.; Bracke, M. E.; Storme, G. A. Mechanisms of tumour spread: a brief overview. In: Grundmann, E., ed. Cancer campaign, vol. 9. The cancer patient—illness and recovery. New York: Gustav Fischer Verlag. 1985:59–64.

    Google Scholar 

  30. Mareel, M. M.; Van Roy, F. M.; Messiaen, L. M., et al. Qualitative and quantitative analysis of tumour invasionin vivo andin vitro. J. Cell Sci. Suppl. 8:141–163; 1987.

    PubMed  CAS  Google Scholar 

  31. Mareel, M. M.; Van Roy, F. M.; De Baetselier, P. The invasive phenotypes. Cancer Metastasis Rev. 9:45–62; 1990.

    Article  PubMed  CAS  Google Scholar 

  32. Menko, A. S.; Klukas, K. A.; Liu, T. F., et al. Junctions between lens cells in differentiating cultures: structure, formation, intercellular permeability and junctional protein expression. Dev. Biol. 123:307–320; 1987.

    Article  PubMed  CAS  Google Scholar 

  33. Meyvisch, C.; Mareel, M. Influence of implantation site of MO4 cell aggregates on the formation of metastases. Invasion & Metastasis 2:51–60; 1982.

    CAS  Google Scholar 

  34. Meyvisch, C.; Storme, G.; Bruyneel, E., et al. Invasiveness and tumorigenicity of MO4 mouse fibrosarcoma cells pretreated with microtubule inhibitors. Clin. & Exp. Metastasis 1:17–28; 1983.

    Article  CAS  Google Scholar 

  35. Miller, G. G.; Blair, D. G.; Hunter, E., et al. Differentiation of rat lens epithelial cells in tissue culture (III) functionsin vitro of a transformed rat lens epithelial cell line. Dev. Growth & Differ. 21:19–27; 1979.

    Article  Google Scholar 

  36. Okada, T. S.; Eguchi, G.; Takeichi, M. The retention of differentiated properties by lens epithelial cells in clonal cell culture. Dev. Biol. 34:321–333; 1973.

    Article  PubMed  CAS  Google Scholar 

  37. Patek, C. E.; Clayton, R. M. Patterns of crystallin expression during differentiation in vitro of several chick genotypes with different effects on lens cell growth rate. Exp. Eye Res. 43:1111–1126; 1986.

    Article  PubMed  CAS  Google Scholar 

  38. Piatigorsky, J. Differentiation of lens fiber cells: a brief review of recent developments. Dev. Biol. 40:f21-f23; 1974.

    Article  Google Scholar 

  39. Ramaekers, F. C.; Osborn, M.; Schmid, E., et al. Identification of the cytoskeletal proteins in lens-forming cells, a special epithelioid cell type. Exp. Cell Res. 127:309–327; 1980.

    Article  PubMed  CAS  Google Scholar 

  40. Ramaekers, F. C.; Bloemendal, H. Cytoskeletal and contractile structures in lens cell differentiation. In: Bloemendal, H., ed. Molecular and cellular biology of the eye lens. New York: John Wiley & sons; 1981.

    Google Scholar 

  41. Reddan, J. R.; McGee, S. J.; Goldenberg, E. M. Both human and newborn rabbit lens epithelial cells exhibit similar limited growth properties in tissue culture. Curr. Eye Res. 2:399–405; 1983.

    CAS  Google Scholar 

  42. Reddan, J. R.; Chepelinsky, A. B.; Dziedzic, D. C., et al. Retention of lens specificity in long-term cultures of diploid rabbit lens epithelial cells. Differentiation 33:168–174; 1986.

    Article  PubMed  CAS  Google Scholar 

  43. Russel, W. C.; Newman, C.; Williamson, D. H. A simple cytochemical technique for demonstration of DNA in cells infected with mycoplasma and viruses. Nature 253:461–462; 1975.

    Article  Google Scholar 

  44. Russell, P.; Fukui, H. N.; Tsunematsu, Y., et al. Tissue culture of lens epithelial cells from normal and Kakano mice. Invest. Ophthalmol. & Visual Sci. 16:243–246; 1977.

    CAS  Google Scholar 

  45. Sanford, K. K.; Evans, V. J. A quest for the mechanism of “spontaneous” malignant transformation in culture with associated advances in culture technology. JNCI 68:895–913; 1982.

    PubMed  CAS  Google Scholar 

  46. Storme, G.; Mareel, M. M. Effect of anticancer agents on invasion of mouse fibrosarcoma cellsin vitro. Oncology 38:182–186; 1981.

    Article  PubMed  CAS  Google Scholar 

  47. Tassin, J.; Malaise, E.; Courtois, Y. Human lens cells have anin vitro proliferative capacity inversely proportional to the donor age. Exp. Cell Res. 123:388–392; 1979.

    Article  PubMed  CAS  Google Scholar 

  48. Todaro, G. J.; Green, H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell Biol. 17:299–313; 1963.

    Article  PubMed  CAS  Google Scholar 

  49. Tsunematsu, Y.; Fukui, H. N.; Kinoshita, J. H. Studies on primary cultures of adult lens cells from normal and hereditary cataractous mice. Exp. Eye Res. 26:671–685; 1978.

    Article  PubMed  CAS  Google Scholar 

  50. Van Roy, F. M.; Messiaen, L.; Liebaut, G., et al. Invasiveness and metastatic capability of rat fibroblast-like cells before and after transfection with immortalising and transforming genes. Cancer Res. 46:4787–4795; 1986.

    PubMed  Google Scholar 

  51. Van Roy, F. M.; Coopman, P.; Suffys, P., et al. Effect of oncogene transfection or passagein vivo on malignant phenotypes of Rat2 cells. Anticancer Res. 9:1553–1564; 1989.

    PubMed  Google Scholar 

  52. Van venrooij, W. J.; Groeneveld, A. A.; Bloemendal, H. Cultured calf lens epithelium. I. Methods of cultivation and characteristics of the cultures. Exp. Eye Res. 18:517–526; 1974.

    Article  PubMed  Google Scholar 

  53. Von Sallmann, L.; Halver, J. E.; Collins, E., et al. Thioacetamide-induced cataract with invasive proliferation of the lens epithelium in rainbow trout. Cancer Res. 26:1819–1825; 1966.

    Google Scholar 

  54. Yuspa, S. H.; Hawley-Nelson, P.; Koehler, B., et al. A survey of transformation markers in differentiating epidermal cell lines. Cancer Res. 40:4694–4703; 1980.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

L. M. is a recipient of a fellowship from the IWONL, Belgium. This work was supported by the Belgisch Werk Tegen Kanker and the Internationale Stichting Jacques Brel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Messiaen, L., Qian, S., De Bruyne, G. et al. Spontaneous acquisition of tumorigenicity and invasiveness by mouse lens explant cells during culture in vitro. In Vitro Cell Dev Biol - Animal 27, 369–380 (1991). https://doi.org/10.1007/BF02630956

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02630956

Key words

Navigation