Skip to main content

Advertisement

Log in

Morphological comparison between three-dimensional structure of immortalized human lens epithelial cells and Soemmering's ring

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

The incidence rate of post-cataract surgery posterior capsule opacification (PCO) and lens turbidity is about 20% in 5 years. Soemmering's ring, which is a type of PCO also called a regenerated lens with similar tissue structure to that of a human lens, is an important proxy for elucidating the mechanism of lens regeneration and maintenance of transparency. The authors created new human immortalized crystalline lens epithelial cells (iHLEC-NY1s) with excellent differentiation potential, and as a result of culturing the cells by static and rotation-floating methods, succeeded in producing a three-dimensional cell structure model (3D-iHLEC-NY1s) which is similar to Soemmering's ring in tissue structure and expression characteristics of αA-crystalline, βB2-crystalline, vimentin proteins. 3D-iHLEC-NY1s is expected to be a proxy in vitro experimental model of Soemmering's ring to enable evaluation of drug effects on suppression of cell aggregate formation and transparency. By further improving the culture conditions, we aim to control the cell sequence and elucidate the mechanism underlying the maintenance of lens transparency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bassnett S, Šikić H (2017) The lens growth process. Prog Retin Eye Res 60:181–200

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pascolini D, Mariotti SP (2012) Global estimates of visual impairment: 2010. Br J Ophthalmol 96:614–618

    Article  PubMed  Google Scholar 

  3. Song E, Sun H, Xu Y, Ma Y, Zhu H, Pan CW (2014) Age-related cataract, cataract surgery and subsequent mortality: a systematic review and meta-analysis. PLoS One 9:e112054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sasaki H, Kawakami Y, Ono M, Jonasson F, Shui YB, Cheng HM, Robman L, McCarty C, Chew SJ, Sasaki K (2003) Localization of cortical cataract in subjects of diverse races and latitude. Invest Ophthalmol Vis Sci 44:4210–4214

    Article  PubMed  Google Scholar 

  5. Worgul BV, Kundiyev YI, Sergiyenko NM, Chumak VV, Vitte PM, Medvedovsky C, Bakhanova EV, Junk AK, Kyrychenko OY, Musijachenko NV, Shylo SA, Vitte OP, Xu S, Xue X, Shore RE (2007) Cataracts among Chernobyl clean-up workers: implications regarding permissible eye exposures. Radiat Res 167:233–243

    Article  CAS  PubMed  Google Scholar 

  6. Harding JJ, Egerton M, van Heyningen R, Harding RS (1993) Diabetes, glaucoma, sex, and cataract: analysis of combined data from two case control studies. Br J Ophthalmol 77:2–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yamamoto N, Hiramatsu N, Isogai S, Kondo M, Imaizumi K, Horiguchi M (2020) Mechanism of atopic cataract caused by eosinophil granule major basic protein. Med Mol Morphol 53:94–103

    Article  CAS  PubMed  Google Scholar 

  8. Shirai K, Okada Y, Saika S, Senba E, Ohnishi Y (2001) Expression of transcription factor AP-1 in rat lens epithelial cells during wound repair. Exp Eye Res 73:461–468

    Article  CAS  PubMed  Google Scholar 

  9. Schaumberg DA, Dana MR, Christen WG, Glynn RJ (1998) A systematic overview of the incidence of posterior capsule opacification. Ophthalmology 105:1213–1221

    Article  CAS  PubMed  Google Scholar 

  10. Spalton DJ (1999) Posterior capsular opacification after cataract surgery. Eye 13:489–492

    Article  PubMed  Google Scholar 

  11. Aose M, Matsushima H, Mukai K, Katsuki Y, Gotoh N, Senoo T (2014) Influence of intraocular lens implantation on anterior capsule contraction and posterior capsule opacification. J Cataract Refract Surg 40:2128–2133

    Article  PubMed  Google Scholar 

  12. Miyake K, Ota I, Miyake S, Horiguchi M (1998) Liquefied aftercataract: a complication of continuous curvilinear capsulorhexis and intraocular lens implantation in the lens capsule. Am J Ophthalmol 125:429–435

    Article  CAS  PubMed  Google Scholar 

  13. Wormstone IM, Eldred JA (2016) Experimental models for posterior capsule opacification research. Exp Eye Res 142:2–12

    Article  CAS  PubMed  Google Scholar 

  14. Suwan Y, Purevdorj B, Teekhasaenee C, Supakontanasan W, Simaroj P (2016) Pseudophakic angle-closure from a Soemmering ring. BMC Ophthalmol 16:91

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wilson HV (1907) A new method by which sponges may be artificially reared. Science 25:912–915

    Article  CAS  PubMed  Google Scholar 

  16. Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, de Sousa C, Lopes SM, Little MH (2015) Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526:564–568

    Article  CAS  PubMed  Google Scholar 

  17. Hayashi M, Yamamoto N, Hiramatsu N, Isogai S, Gotoh Y, Goto Y, Kondo M, Imaizumi K (2018) A basic study on self-reconstitution of alveolar epithelium-like cells by tissue stem cells in mouse lung. Vitro Cell Dev Biol Anim 54:648–657

    Article  CAS  Google Scholar 

  18. van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, van Houdt W, van Gorp J, Taylor-Weiner A, Kester L, McLaren-Douglas A, Blokker J, Jaksani S, Bartfeld S, Volckman R, van Sluis P, Li VS, Seepo S, Sekhar Pedamallu C, Cibulskis K, Carter SL, McKenna A, Lawrence MS, Lichtenstein L, Stewart C, Koster J, Versteeg R, van Oudenaarden A, Saez-Rodriguez J, Vries RG, Getz G, Wessels L, Stratton MR, McDermott U, Meyerson M, Garnett MJ, Clevers H (2015) Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161:933–945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Bonnet C (1781) Sur les reproductions des salamanders. Oeuvres Hist Natur Philos 2: 175–179 (French)

  20. Yang C (2010) Efficient generation of lens progenitor cells and lentoid bodies from human embryonic stem cells in chemically defined conditions. FASEB J 24:3274–3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reddy VN, Lin LR, Arita T, Zigler JS Jr, Huang QL (1988) Crystallins and their synthesis in human lens epithelial cells in tissue culture. Exp Eye Res 47:465–478

    Article  CAS  PubMed  Google Scholar 

  22. Goto Y, Ibaraki N, Miyake K (2003) Human lens epithelial cell damage and stimulation of their secretion of chemical mediators by benzalkonium chloride rather than latanoprost and timolol. Arch Ophthalmol 121:835–839

    Article  CAS  PubMed  Google Scholar 

  23. Dong N, Tang X, Xu B (2015) miRNA-181a inhibits the proliferation, migration, and epithelial-mesenchymal transition of lens epithelial cells. Invest Ophthalmol Vis Sci 56:993–1001

    Article  CAS  PubMed  Google Scholar 

  24. Yamamoto N, Kato Y, Sato A, Hiramatsu N, Yamashita H, Ohkuma M, Miyachi E, Horiguchi M, Hirano K, Kojima H (2016) Establishment of a new immortalized human corneal epithelial cell line (iHCE-NY1) for use in evaluating eye irritancy by in vitro test methods. Vitro Cell Dev Biol Anim 52:742–748

    Article  CAS  Google Scholar 

  25. Naoki Y (2014) Cell biology of the crystalline lens. J Eye 31: 3–8 (Japanese)

  26. Hiramatsu N, Yamamoto N, Isogai S, Onouchi T, Hirayama M, Maeda S, Ina T, Kondo M, Imaizumi K (2020) An analysis of monocytes and dendritic cells differentiated from human peripheral blood monocyte-derived induced pluripotent stem cells. Med Mol Morphol 53:63–72

    Article  CAS  PubMed  Google Scholar 

  27. Hiramatsu N, Yamamoto N (2016) The basic studying of lens regeneration—a trial study for three-dimensional lens reconstruction model using immortalized lens epithelial cells. J Jpn Soc Cataract Res 28: 106–110 (Japanese)

  28. Hiramatsu N, Yamamoto N (2019) Aiming for the regeneration of transparent lens—basic research using immortalized lens epithelial cells and iPS cells. J Jpn Soc Cataract Res 31: 27–29 (Japanese)

  29. Ibaraki N, Chen SC, Lin LR, Okamoto H, Pipas JM, Reddy VN (1998) Human lens epithelial cell line. Exp Eye Res 67:577–585

    Article  CAS  PubMed  Google Scholar 

  30. Nagai T, Furukawa KS, Sato M, Ushida T, Mochida J (2008) Characteristics of a scaffold-free articular chondrocyte plate grown in rotational culture. Tissue Eng Part A 14:1183–1193

    Article  CAS  PubMed  Google Scholar 

  31. Suenaga H, Furukawa KS, Suzuki Y, Takato T, Ushida T (2015) Bone regeneration in calvarial defects in a rat model by implantation of human bone marrow-derived mesenchymal stromal cell spheroids. J Mater Sci Mater Med 26:254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Hejtmancik JF, Shiels A (2015) Overview of the lens. Prog Mol Biol Transl Sci 134:119–127

    Article  PubMed  PubMed Central  Google Scholar 

  33. Uusitalo M, Kivelä T (1997) Cell types of secondary cataract: an immunohistochemical analysis with antibodies to cytoskeletal elements and macrophages. Graefes Arch Clin Exp Ophthalmol 235:506–511

    Article  CAS  PubMed  Google Scholar 

  34. DelNero P, Lane M, Verbridge SS, Kwee B, Kermani P, Hempstead B, Stroock A, Fischbach C (2015) 3D culture broadly regulates tumor cell hypoxia response and angiogenesis via pro-inflammatory pathways. Biomaterials 55:110–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hutmacher DW, Singh H (2008) Computational fluid dynamics for improved bioreactor design and 3D culture. Trends Biotechnol 26:166–172

    Article  CAS  PubMed  Google Scholar 

  36. Lovicu FJ, Steven P, Saika S, McAvoy JW (2004) Aberrant lens fiber differentiation in anterior subcapsular cataract formation: a process dependent on reduced levels of Pax6. Invest Ophthalmol Vis Sci 45:1946–1953

    Article  PubMed  Google Scholar 

  37. Zhang XH, Sun HM, Yuan JQ (2001) Extracellular matrix production of lens epithelial cells. J Cataract Refract Surg 27:1303–1309

    Article  CAS  PubMed  Google Scholar 

  38. Latvala T, Uusitalo M, Puolakkainen P, Kivelä T, Tervo T (2000) Immunolocalization of transforming growth factor-beta1 and tenascin in human secondary cataract. Acta Ophthalmol Scand 78:344–347

    Article  CAS  PubMed  Google Scholar 

  39. Cousins SW, McCabe MM, Danielpour D, Streilein JW (1991) Identification of transforming growth factor-beta as an immunosuppressive factor in aqueous humor. Invest Ophthalmol Vis Sci 32:2201–2211

    CAS  PubMed  Google Scholar 

  40. Kurosaka D, Nagamoto T (1994) Inhibitory effect of TGF-beta 2 in human aqueous humor on bovine lens epithelial cell proliferation. Invest Ophthalmol Vis Sci 35:3408–3412

    CAS  PubMed  Google Scholar 

  41. Katsuki Y, Matsushima H, Mukai K, Watabiki S, Aose M, Terauchi W, Nagamoto T, Senoo T (2019) Open-capsule intraocular lens to prevent posterior capsule opacification. J Cataract Refract Surg 45:1007–1012

    Article  PubMed  Google Scholar 

  42. Lin H, Ouyang H, Zhu J, Huang S, Liu Z, Chen S, Cao G, Li G, Signer RA, Xu Y, Chung C, Zhang Y, Lin D, Patel S, Wu F, Cai H, Hou J, Wen C, Jafari M, Liu X, Luo L, Zhu J, Qiu A, Hou R, Chen B, Chen J, Granet D, Heichel C, Shang F, Li X, Krawczyk M, Skowronska-Krawczyk D, Wang Y, Shi W, Chen D, Zhong Z, Zhong S, Zhang L, Chen S, Morrison SJ, Maas RL, Zhang K, Liu Y (2016) Lens regeneration using endogenous stem cells with gain of visual function. Nature 531:323–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao L, Chen XJ, Zhu J, Xi YB, Yang X, Hu LD, Ouyang H, Patel SH, Jin X, Lin D, Wu F, Flagg K, Cai H, Li G, Cao G, Lin Y, Chen D, Wen C, Chung C, Wang Y, Qiu A, Yeh E, Wang W, Hu X, Grob S, Abagyan R, Su Z, Tjondro HC, Zhao XJ, Luo H, Hou R, Jefferson J, Perry P, Gao W, Kozak I, Granet D, Li Y, Sun X, Wang J, Zhang L, Liu Y, Yan YB, Zhang K (2015) Lanosterol reverses protein aggregation in cataracts. Nature 523:607–611

    Article  CAS  PubMed  Google Scholar 

  44. Nagai N, Umachi K, Otake H, Oka M, Hiramatsu N, Sasaki H, Yamamoto N (2020) Ophthalmic in situ gelling system containing lanosterol nanoparticles delays collapse of lens structure in shumiya cataract rats. Pharmaceutics 12:629

    Article  CAS  PubMed Central  Google Scholar 

  45. Oharazawa H, Ibaraki N, Lin LR, Reddy VN (1999) The effects of extracellular matrix on cell attachment, proliferation and migration in a human lens epithelial cell line. Exp Eye Res 69:603–610

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Hiromi Yamashita, Chieko Oka, Naomi Maeda (Fujita Health University) for supporting the experiments. This work was supported by MEXT/JSPS KAKENHI Grant Number 20K09815.

Funding

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Yamamoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiramatsu, N., Nagai, N., Kondo, M. et al. Morphological comparison between three-dimensional structure of immortalized human lens epithelial cells and Soemmering's ring. Med Mol Morphol 54, 216–226 (2021). https://doi.org/10.1007/s00795-021-00280-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-021-00280-y

Keywords

Navigation