Skip to main content
Log in

Embryogenic cells in plant tissue cultures: Occurrence and behavior

  • Invited Review
  • Published:
In Vitro Cellular &Developmental Biology Aims and scope Submit manuscript

Summary

Plants develop from meristems where cells proliferate and are partitioned into layers that eventually differentiate to form the various tissues and organs of the plant. A phenomenon unique to certain plant tissues is the ability to inducede nova a range of developmental patterns, including embryogenesis. The temporal and spacial distribution of these developmental competencies suggests that regulatory proteins, rather than a lack of signals or signal receptors, shield specific developmental genes from signals that otherwise would confuse development. Studies involving embryogenic cells demonstrate that they are not strongly shielded from developmental signals, thus they are not determined. Furthermore, the normal development of zygotic and somatic embryos is readily perturbed by abnormal physicochemical environments. This suggests that embryogeny remains developmentally plastic until differentiation is largely completed. The ability to induce somatic embryogenesis from specific tissues by specific signals is providing opportunities to further the molecular characterization of the menagerie of genetic regulation involved in development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aderkas, P. V.; Bonga, J. M. Formation of haploid embryoids ofLarix decidua: early embryogenesis. Amer. J. Bot. 75:690–700; 1988.

    Google Scholar 

  2. Ammirato, P. V. Organization events during somatic embryogenesis. Green, C. E., ed. Plant biology, Vol. 3, Plant tissue and cell culture, New York: Alan R. Liss; 1987:57–81.

    Google Scholar 

  3. Atchison, M. L. Enhancers: mechanisms of action and cell specificity. Ann. Rev. Cell Biol. 4:127–153; 1988.

    PubMed  CAS  Google Scholar 

  4. Bhaskaran, S.; Smith, R. H. Enhanced somatic embryogenesis inSorghum bicolor from shoot tip culture. In Vitro 24:65–70; 1988.

    Google Scholar 

  5. Biddington, N. L.; Sutherland, R. A.; Robinson, H. T. Silver nitrate increases embryo production in anther culture of brussels sprouts. Ann. Bot. 62:181–185; 1988.

    CAS  Google Scholar 

  6. Borkird, C.; Choi, J. H.; Sung, Z. R. Effect of 2,4-dichlorophenoxyacetic acid on the expression of embryogenic program in carrot. Plant Physiol. 81:1143–1146; 1986.

    PubMed  CAS  Google Scholar 

  7. Carlberg, I.; Soderhall, K.; Glimelius, K., et al. Protease activities in non-embryogenic and embryogenic carrot cell strains during callus growth and embryo formation. Physiol. Plant. 62:458–464;1984.

    CAS  Google Scholar 

  8. Carman, J. G. Improved somatic embryogenesis in wheat by partial simulation of the in-ovulo oxygen, growth-regulator and desiccation environments. Planta 175:417–424; 1988.

    CAS  Google Scholar 

  9. Carman, J. G. Thein ovulo environment and its relevance to cloning wheat via somatic embryogenesis. In Vitro 25:1155–1162; 1989.

    Google Scholar 

  10. Carman, J. G.; Campbell, W. F. Factors affecting somatic embryogenesis in wheat. In: Bajaj, Y. P. S., ed., Biotechnology in agriculture and forestry, vol. 13, Berlin: Springer-Verlag; 1990, (in press).

    Google Scholar 

  11. Carman, J. G.; Jefferson, N. E.; Campbell, W. F. Induction of embryogenicTriticum aestivum L. calli. I. Quantification of genotype and culture medium effects. Plant Cell Tis. Org. Cult. 12:83–95; 1988.

    Google Scholar 

  12. Carman, J. G.; Jefferson, N. E.; Campbell, W. F. Induction of embryogenicTriticum aestivum L. calli. II. Quantification of organic addenda and other culture variable effects. Plant Cell Tis. Org. Cult. 12:97–110; 1988.

    Google Scholar 

  13. Carnes, M. G.; Wright, M. S. Endogenous hormone levels of immature corn kernels of A188, Missouri-17, and Dekalb XL-12. Plant Sci. 57:195–203; 1988.

    CAS  Google Scholar 

  14. Chen, L.-J.; Luthe, D. S. Analysis of proteins from embryogenic and non-embryogenic rice (Oryza sativa L.) calli. Plant Sci. 48:181–188; 1987.

    CAS  Google Scholar 

  15. Chibbar, R. N.; Shylur, J.; Georges, F., et al. Esterase isozymes as markers of somatic embryogenesis in cultured carrot cells. J. Plant Physiol. 133:367–370; 1988.

    CAS  Google Scholar 

  16. Choi, J. H.; Liu, L.-S.; Borkird, C., et al. Cloning of genes developmentally regulated during plant embryogenesis. Proc. Natl. Acad. Sci. 84:1906–1910; 1987.

    PubMed  CAS  Google Scholar 

  17. Choi, J. H.; Sung, Z. R. Induction, commitment and progression of plant embryogenesis. In: Kung, S.; Arntzen, C., eds. Plant biotechnology. Boston: Butterworths; 1989:141–160.

    Google Scholar 

  18. Christianson, M. L.; Warnick, D. A. Temporal requirement for phytohormone balance in the control of organogenesisin vitro. Dev. Biol. 112:494–497; 1985.

    CAS  Google Scholar 

  19. Coppens, L.; Gillis, E. Isoenzyme electrofocusing as a biochemical marker system of embryogenesis and organogenesis in callus tissues ofHordeum vulgare L. J. Plant Physiol. 127:153–158; 1987.

    CAS  Google Scholar 

  20. Creemer-Molenaar, J.; Loeffen, J. P. M.; Van der Valk, P. The effect of 2,4-dichlorophenoxyacetic acid and donor plant environment on plant regeneration from immature inflorescence-derived callus ofLolium perenne L. andLolium multiflorum L. Plant Sci. 57:165–172;1988.

    Google Scholar 

  21. Cui, D.; Myers, J. R.; Collins, G. B., et al.In vitro regeneration inTrifolium. I. Direct somatic embryogenesis inT. rubens (L.). Plant Cell Tis. Org. Cult. 15:33–45; 1988.

    Google Scholar 

  22. Davidonis, G. H. Fiber development in preanthesis cotton ovules. Physiol. Plant. 75:290–294; 1989.

    Google Scholar 

  23. de Vries, S. C.; Booij, H.; Meyerink, P., et al. Acquisition of embryogenic potential in carrot cell-suspension cultures. Planta 176:196–204; 1988.

    Google Scholar 

  24. Duncan, D. R.; Singletary, G. W.; Below, F. E., et al. Increased induction of regenerable callus cultures from cultured kernels of the maize inbred FR27rhm. Plant Cell Rept. 8:350–353; 1989.

    Google Scholar 

  25. Duncan, D. R.; Williams, M. E.; Zehr, B. E., et al. The production of callus capable of plant regeneration from immature embryos of numerousZea mays genotypes. Planta 165:322–332; 1985.

    CAS  Google Scholar 

  26. Durzan, D. J.; Gupta, P. K. Somatic embryogenesis and polyembryogenesis in douglas-fir cell suspension cultures. Plant Sci. 52:229–235; 1987.

    CAS  Google Scholar 

  27. Emershad, R. L.; Ramming, D. W.; Serpe, M. D.,In ovulo embryo development and plant formation from stenospermic genotypes ofVitis vinifera. Amer. J. Bot. 76:397–402; 1989.

    Google Scholar 

  28. Evans, D. A.; Sharp, W. R.; Flick, C. E. Growth and behavior of cell cultures. Embryogenesis and organogenesis. In: Thorpe, T. A., ed. Plant tissue culture: methods and applications in agriculture. New York: Academic Press; 1981:45–113.

    Google Scholar 

  29. Evans, P. T.; Malmberg, R. L. Alternative pathways of tobacco placental development: time of commitment and analysis of a mutant. Devel. Biol. 136:273–283; 1989.

    CAS  Google Scholar 

  30. Everett, N. P.; Wach, M. J.; Ashworth, D. J. Biochemical markers of embryogenesis in tissue cultures of the maize inbred B73. Plant Sci. 41:133–140; 1985.

    CAS  Google Scholar 

  31. Finer, J. J. Plant regeneration from somatic embryogenic suspension cultures of cotton (Gossypium hirsutum L.). Plant Cell Rept. 7:399–402; 1988.

    Google Scholar 

  32. Franze, P. F.; de Ruijter, N. C. A.; Schel, J. H. N. Isozymes as biochemical and cytochemical markers in embryogenic callus cultures of maize (Zea mays L.). Plant Cell Rept. 8:67–70; 1989.

    Google Scholar 

  33. Gray, D. J.; Mortensen, J. A. Initiation and maintenance of longterm somatic embryogenesis from anthers and ovaries ofVitis longii “microsperma”. Plant Cell Tis. Org. Cult. 9:73–80;1987.

    Google Scholar 

  34. Grierson, D.; Covey, S. N. Plant molecular biology. New York: Chapman and Hall; 1988:98–219.

    Google Scholar 

  35. Guern, J. Regulation from within: the hormone dilemma. Ann. Bot. 60:75–102; 1987.

    CAS  Google Scholar 

  36. Guilfoyle, T. J. Second messengers and gene expression. In: Boss, W. F.; Morre, D. J., eds. Second messengers in plant growth and development, vol. 6. New York: Alan R. Liss; 1989:315–326.

    Google Scholar 

  37. Hahne, G.; Mayer, J. E.; Lorz, H. Embryogenic and callus-specific proteins in somatic embryogenesis of the grass,Dactylis glomerata L. Plant Sci. 55:267–279; 1988.

    CAS  Google Scholar 

  38. Hammatt, N.; Davey, M. R. Somatic embryogenesis and plant regeneration from cultured zygotic embryos of soybean (Glycine max L. Merr.). J. Plant Physiol. 128:219–226; 1987.

    Google Scholar 

  39. Hensinger, H.; Schauz, K. Induction of pistil-like structures in suspension-derived callus cultures of wheat (Triticum aestivum). Plant Cell Rept. 6:353–364; 1987.

    Google Scholar 

  40. Jain, S. M.; Newton, R. J.; Soltes, E. J. Enhancement of somatic embryogenesis in Norway spruce (Picea abies L.). Theor. Appl. Genet. 76:501–506; 1988.

    Google Scholar 

  41. Joersbo, M.; Andersen, J. M.; Okkels, F. T., et al. Isoperoxidases as markers of somatic embryogenesis in carrot cell suspension cultures. Physiol. Plant. 76:10–16; 1989.

    CAS  Google Scholar 

  42. Johnson, P. F.; McKnight, S. L. Eukaryotic transcriptional regulatory proteins. Ann. Rev. Biochem. 58:799–839; 1989.

    PubMed  CAS  Google Scholar 

  43. Jones, T. J.; Rost, T. L. Histochemistry and ultrastructure of rice (Oryza sativa) zygotic embryogenesis. Amer. J. Bot. 76:504–520; 1989.

    Google Scholar 

  44. Jones, T. J.; Rose, T. L. The developmental anatomy and ultrastructure of somatic embryos from rice (Oryza sativa L.) scutellum epithelial cells. Bot. Gaz. 150:41–49; 1989.

    Google Scholar 

  45. Kaleikau, E. K.; Sears, R. G.; Gill, B. S. Control of tissue culture response in wheat (Triticum aestivum L.). Theor. Appl. Genet. 78:783–787; 1989.

    Google Scholar 

  46. Kamada, H.; Kobayashi, K.; Kiyosue, T., et al. Stress induced somatic embryogenesis in carrot and its application to synthetic seed production. In Vitro 25:1163–1166; 1989.

    Google Scholar 

  47. Krsnik-Rasol, M.; Jelaska, S.; Serman, D. Isoperoxidases-early indicators of somatic embryoid differentiation in pumpkin tissue. Acta Bot. Croat. 41:33–39; 1982.

    CAS  Google Scholar 

  48. Larkin, J. C.; Felsheim, R.; Das, A., Floral determination in the terminal bud of the short-day plantPharbitis nil. Dev. Biol. 137:434–443; 1990.

    PubMed  CAS  Google Scholar 

  49. Lewin, B. Genes, 3rd Edition. New York: John Wiley & Sons; 1987.

    Google Scholar 

  50. LoSchiavo, F.; Pitto, L.; Giuliano, G., et al. DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation, differentiation, hormones and hypomethylating drugs. Theor. Appl. Genet. 77:325–331; 1989.

    CAS  Google Scholar 

  51. Luhrs, R.; Lorz, H. Plant regeneration in vitro from embryogenic cultures of spring- and winter-type barley (Hordeum vulgare L.) varieties. Theor. Appl. Genet. 76:16–25; 1987.

    Google Scholar 

  52. Maddock, S. E.; Lancaster, V. A.; Risiott, R., et al. Plant regeneration from cultured immature embryos and inflorescences of 25 cultivars of wheat (Triticum aestivum). J. Exp. Bot. 34:915–926; 1983.

    Google Scholar 

  53. Magnusson, I.; Bornman, C. H. Anatomical observations on somatic embryogenesis from scutellar tissues of immature zygotic embryos ofTriticum aestivum. Physiol. Plant 63:137–145; 1985.

    Google Scholar 

  54. Mathias, R. J.; Atkinson, E.In vitro expression of genes affecting whole plant phenotype—the effect of Rht/Gai alleles on the callus culture response of wheat (Triticum aestivum L. em Thell). Theor. Appl. Genet. 75:474–479; 1988.

    Google Scholar 

  55. Mathias, R. J.; Boyd, L. A. Cefotaxime stimulates callus growth, embryogenesis and regeneration in hexaploid bread wheat (Triticum aestivum L. em Thell). Plant Sci. 46:217–223; 1986.

    CAS  Google Scholar 

  56. Mathias, R. J.; Mukasa, C. The effect of cefotaxime on the growth and regeneration of callus from four varieties of barley (Hordeum vulgare L.). Plant Cell Rept. 6:454–457; 1987.

    CAS  Google Scholar 

  57. McCain, J. W.; Hodges, T. K. Anatomy of somatic embryos from maize embryo cultures. Bot. Gaz. 147:453–460; 1986.

    Google Scholar 

  58. McCain, J. W.; Kamo, K. K.; Hodges, T. K. Characterization of somatic embryo development and plant regeneration from friable maize callus cultures. Bot. Gaz. 149:16–20; 1988.

    Google Scholar 

  59. McDaniel, C. N.; Poethig, R. S. Cell-lineage patterns in the shoot apical meristem of the germinating maize embryo. Planta 175:13–22; 1988.

    Google Scholar 

  60. Meyerowitz, E. M.; Smyth, D. R.; Bowman, J. L. Abnormal flowers and pattern formation in floral development. Development 106:209–217; 1989.

    Google Scholar 

  61. Meeks-Wagner, D. R.; Dennis, E. S.; Van, K. T. T., et al. Tobacco genes expressed duringin vitro floral initiation and their expression during normal plant development. Plant Cell 1:25–35; 1989.

    PubMed  CAS  Google Scholar 

  62. Mohanty, B. D.; Ghosh, P. D. Somatic embryogenesis and plant regeneration from leaf callus ofHordeum vulgare. Ann. Bot. 61:551–555; 1988.

    Google Scholar 

  63. Mohnen, D.; Eberhard, S.; Marfa, V., et al. The control of root, vegetative shoot and flower morphogenesis in tobacco thin cell-layer explants (TCLs). Development 108:191–201; 1990.

    PubMed  CAS  Google Scholar 

  64. Monnier, M.; Norstog, K. Effect ofin ovulo period on the differentiation and regulation of immature embryos ofZamia culturedin vitro. J. Exp. bot. 37:1633–1642; 1986.

    Google Scholar 

  65. Morrish, F.; Vasil, I. K. DNA methylation and embryogenic competence in leaves and callus of napiergrass (Pennisetum purpureum Schum). Plant Physiol. 90:37–40; 1989.

    PubMed  CAS  Google Scholar 

  66. Mulin, M.; Tran Than Van, K. Obtention ofin vitro flowers from thin epidermal cell layers ofPetunia hybrids (Hort.). Plant Sci. 62:113–121; 1989.

    Google Scholar 

  67. Nagasawa, A.; Finer, J. J. Plant regeneration from embryogenic suspension cultures of chinese yam (Dioscorea opposita Thunb.). Plant Sci. 60:263–271; 1989.

    CAS  Google Scholar 

  68. Natesh, S.; Rau, M. A. The embryo. In: Johri, B. M., ed. Embryology of angiosperms. New York: Springer-Verlag; 1984:377–443.

    Google Scholar 

  69. Negbi, M. The structure and function of the scutellum of the gramineae. Bot. J. Linean Soc. 88:205–222; 1984.

    Google Scholar 

  70. Nomura, K.; Komamine, A. Identification and isolation of single cells that produce somatic embryos at a high frequency in a carrot suspension culture. Plant Physiol. 79:988–991; 1985.

    PubMed  CAS  Google Scholar 

  71. Norstog, K.; Klein, R. M. Development of cultured barley embryos. II. Precocious germination and dormancy. Can J. Bot. 50:1887–1894; 1972.

    Google Scholar 

  72. Parrott, W. A.; Williams, E. G.; Hildebrand, D. F., et al. Effect of genotype on somatic embryogenesis from immature cotyledons of soybean. Plant Cell Tis. Cul. 16:15–21; 1989.

    Google Scholar 

  73. Peng, J.; Hodges, T. K. Genetic analysis of plant regeneration in rice (Oryza sativa L.) In Vitro 25:91; 1989.

    Google Scholar 

  74. Purnhauser, L.; Medgyesy, P.; Czako, M., et al. Stimulation of shoot regeneration inTriticum aestivum andNicotiana plumbaginifolia Viv. tissue cultures using the ethylene inhibitor AgNO3. Plant Cell Rept. 6:1–4; 1987.

    CAS  Google Scholar 

  75. Quatrano, R. S. The role of hormones during seed development. In: Davies, P. J., ed. Plant hormones and their role in plant growth and development. Boston: Martinus Nijhoff Publishers; 1987:494–514.

    Google Scholar 

  76. Qureshi, J. A.; Kartha, K. K.; Abrams, S. R., et al. Modulation of somatic embryogenesis in early and late-stage embryos of wheat (Triticum aestivum L.) under the influence of (±)-abscisic acid and its analogs. Plant Cell Tis. Org. Cult. 18:55–69;1989.

    CAS  Google Scholar 

  77. Racusen, R. H.; Schiavone, F. M. Detection of spatially- and stage-specific proteins in extracts from single embryos of the domesticated carrot. Development 103:665–674; 1988.

    CAS  Google Scholar 

  78. Rajasekaran, K.; Hein, M. B.; Davis, G. C., et al. Endogenous growth regulators in leaves and tissue cultures ofPennisetum purpureum Schum. J. Plant Physiol. 130:13–25: 1987.

    CAS  Google Scholar 

  79. Rajasekaran, K.; Hein, M. B.; Vasil, I. K. Endogenous abscisic acid and indole-3-acetic acid and somatic embryogenesis in cultured leaf explants ofPennisetum purpureum Schum. 1. Effects in vivo and in vitro of glyphosate, fluridone and paclobutrazol. Plant Physiol. 84:47–51;1987.

    PubMed  CAS  Google Scholar 

  80. Rambaud, C.; Rambour, S. Partial characterization of nitrate reductase in carrot cells: changes in enzymatic activity during somatic embryogenesis. Plant Physiol. Biochem. 27:235–243;1989.

    CAS  Google Scholar 

  81. Ranch, J. P.; Oglesby, L.; Zielinski, A. C. Plant regeneration from embryo-derived tissue cultures of soybeans. In Vitro 21:653–658; 1985.

    Google Scholar 

  82. Reinert, J. Morphogenese und ihre knotrolle an gewebekulturen aus carotten. Naturwiss 45:344–345; 1958.

    CAS  Google Scholar 

  83. Roberts, D. R.; Flinn, B. S.; Webb, D. T., et al. Characterization of immature embryos of interior spruce by SDS-PAGE and microscopy in relation to their competence for somatic embryogenesis. Plant Cell Rept. 8:285–288;1989.

    CAS  Google Scholar 

  84. Roustan, J. P.; Latche, A.; Fallot, J. Stimulation ofDaucus carota somatic embryogenesis by inhibitors of ethylene synthesis; cobalt and nickel. Plant Cell Rept. 8:182–185;1989.

    CAS  Google Scholar 

  85. Schiavone, F. M. Microamputation of somatic embryos of the domestic carrot reveals apical control of axis elongation and root regeneration. Development 103:657–664;1988.

    Google Scholar 

  86. Schibler, U.; Sierra, F. Alternative promoters in developmental gene expression. In: Ann. Rev. Genet. 21:237–257;1987.

  87. Schwendiman, J.; Pannetier, C.; Michaux-Ferriere, N. Histology of somatic embryogenesis from leaf explants of the oil palmElaeis guineensis Ann. Bot. 62:43–52;1988.

    Google Scholar 

  88. Sharp, W. R.; Evans, D. A.; Sondahl, M. R. Application of somatic, embryogenesis to crop improvement. In: Fujiwara, A., ed. Plant tissue culture 1982. Japan: Japanese Association for Plant Tissue Culture; 1982:759–762.

    Google Scholar 

  89. Sharp, W. R.; Sondahl, M. R.; Caldas, L. S., et al. The physiology ofin vitro asexual embryogenesis. Hort. Rev. 2:268–310;1980.

    CAS  Google Scholar 

  90. Sheridan, W. F. Maize developmental genetics: genes of morphogenesis. Ann. Rev. Genet. 22:353–385;1988.

    PubMed  CAS  Google Scholar 

  91. Singh, B. J.; Jenner, C. F. Culture of detached ears of wheat in liquid culture: modification and extension of the method. Aust. J. Plant. Physiol. 10:227–236;1983.

    Google Scholar 

  92. Slay, R. M.; Grimes, H. D.; Hodges, T. K. Plasma membrane proteins associated with undifferentiated and embryonicDaucus, carota tissue. Protoplasma 150:139–149;1989.

    Google Scholar 

  93. Smith, D. L.; Krikorian, A. D. A new way to study strategic control points in plant somatic embryogenesis on earth and in space. Program and abstracts 5th Ann. Mtg. Rosslyn, VA:Amer. Soc. Grav. Space Biol.; 1989:81.

  94. Smith, D. L.; Krikorian, A. D. Release of somatic embryogenic potential from excised zygotic, embryos of carrot and maintenance of proembryonic cultres in hormone-free medium. Amer. J. Bot. 76:1832–1843;1989.

    CAS  Google Scholar 

  95. Songstad D. D.; Duncan, D. R.; Widholm, J. M. Effect of 1-aminocyclopropane-1-carboxylic acid, silver nitrate, and norbornadiene on plant regeneration from maize callus cultures. Plant Cell Rept. 7:262–265;1988.

    CAS  Google Scholar 

  96. Srinivasan, C.; Mullins, M. G. High-frequency somatic embryo production from unfertilized ovules of grapes. Scientia Hort. 13:245–252;1980.

    Google Scholar 

  97. Stacey, N. J.; Roberts, K.; Knox, J. P. Patterns of expression of the JIM4 arabinogalactan-protein epitope in cell cultures and during somatic embryogenesis inDaucus carota L. Planta 180:285–292;1990.

    CAS  Google Scholar 

  98. Starling, R. J.; Jones, A. M.; Trewavas, A. J. Binding sites for plant hormones and their possible roles in determining tissue sensitivity. What's New Plant Physiol. 15:37–40;1984.

    CAS  Google Scholar 

  99. Steward, F. C. Growth and development of cultivated cells. III. Interpretations of the growth from free cell to carrot plant. Am. J. Bot. 45:709–713;1958.

    Google Scholar 

  100. Stirn, S.; Jacobsen, H. J. Marker proteins for embryogenic differentiation patterns in pea callus. Plant Cell Rept. 6:50–54;1987.

    CAS  Google Scholar 

  101. Struhl, K. Molecular mechanisms of transcriptional regulation in yeast. Ann. Rev. Biochem. 58:1051–1077;1989.

    PubMed  CAS  Google Scholar 

  102. Sung, Z. R.; Okimoto, R. Embryonic proteins in somatic embryos of carrot (two dimensional gel electrophoresis/auxin/carrot culture/embryogenesis). Proc. Natl. Acad. Sci. 78:3683–3687;1981.

    PubMed  CAS  Google Scholar 

  103. Sussex, I. M. Developmental programming of the shoot meristem. Cell 56:225–229;1989.

    PubMed  CAS  Google Scholar 

  104. Tamas, I. A. Hormonal regulation of apical dominance. In: Davies, P. J., ed., Plant hormones and their role in plant growth and development. Boston: Martinus Nijhoff Publishers; 1987:393–410.

    Google Scholar 

  105. Thomas, M. R.; Scott, K. J. Plant regeneration by somatic embryogenesis from callus initiated from immature embryos and immature inflorescences ofHordeum vulgare. J. Plant Physiol. 121:159–169;1985.

    CAS  Google Scholar 

  106. Tisserat, B.; Esan, E. B.; Murashige, T. Somatic embryogenesis in angiosperms. Hort. Rev. 1:1–77;1979.

    Google Scholar 

  107. Tran Than Van, M. Direct flower neoformation from superficial tissue of small explants ofNicotiana tabacum L. Planta 115:87–92;1973.

    Google Scholar 

  108. Trigiano, R. N.; Gray, D. J.; Conger, B. V., et al. Origin of direct somatic embryos from cultured leaf segments ofDactylis glomerata. Bot. Gaz. 150:72–77;1989.

    Google Scholar 

  109. Triplett, B. A.; Quatrano, R. S. Timing., localization and control of wheat germ agglutinin synthesis in developing wheat embryos. Dev. Biol. 91:491–496;1982.

    PubMed  CAS  Google Scholar 

  110. Vasil, V. Vasil, I. K. The ontogeny of somatic embryos ofPennisetum americanum (L.). K. Schum. I. In cultures of immature embryos. Bot. Gaz. 143:454–465;1982.

    Google Scholar 

  111. Wakana, A.; Shunpei, U. Adventive embryogenesis inCitrus I. the occurrence of adventive embryos without pollination or fertilization. Amer. J. Bot. 74:517–530;1987.

    Google Scholar 

  112. Wenck, A. R.; Conger, B. V.; Trigiano, R. N., et al. Inhibition of somatic embryogenesis in orchardgrass by endogenous cytokinins Plant Physiol. 88:990–992;1988.

    PubMed  CAS  Google Scholar 

  113. Wernicke, W.; Milkovits, L. Developmental gradients in wheat leaves—response of leaf segments in different genotypes culturedin vitro. J. Plant. Physiol. 115:49–58;1984.

    CAS  Google Scholar 

  114. Wernicke, W.; Milkovits, L. The regeneration potential of wheat shoot meristems in the presence and absence of 2,4-dichlorophenoxyacetic acid. Protoplasma 121:131–141;1986.

    Google Scholar 

  115. Wicart, G.; Mouras, A.; Lutz, A. Histological study of organogenesis and embryogenesis inCyclamen persicum Mill. tissue cultures: evidence for a single organogenetic pattern. Protoplasma 119:159–167;1984.

    Google Scholar 

  116. Wilde, H. D.; Nelson, W. S.; Booij, H., et al. Gene-expression programs in embryogenic, and non-embryogenic, carrot cultures. Planta 176:205–221;1988.

    CAS  Google Scholar 

  117. Williams, E. G.; Maheswaran, G. Somatic embryogenesis: factors influencing coordinated behavior of cells as an embryogenic group. Ann. Bot. 57:443–462;1986.

    Google Scholar 

  118. Willman, M. R.; Schroll S. M.; Hodges, T. K. Inheritance of somatic embryogenesis and plantlet regeneration from primary (type 1) callus in maize. In Vitro 25:95–100;1989.

    Google Scholar 

  119. Wochok, Z. S.; Burleson, B. Isoperoxidase activity and induction in cultured tissues of wild carrot: a comparison of proembryos and embryos. Physiol. Plant. 31:73–75;1974.

    CAS  Google Scholar 

  120. Zimmerman, J. L.; Apuya, N.; Darwish, K., et al. Novel regulation of heat shock genes during carrot somatic embryo development. Plant Cell 1:1137–1146;1989.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carman, J.G. Embryogenic cells in plant tissue cultures: Occurrence and behavior. In Vitro Cell Dev Biol 26, 746–753 (1990). https://doi.org/10.1007/BF02623615

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623615

Key words

Navigation