Skip to main content
Log in

Biochemical and immunological approaches to the study of gap junctional communication

  • Symposium
  • Published:
In Vitro Aims and scope Submit manuscript

Summary

Studies on gap junctions isolated from rat liver by a procedure that avoids exogenous proteolysis (Hertzberg, E. L.; Gilula, N. B.; J. Biol. Chem. 254: 2138–2147; 1979) are described. The original isolation procedure was modified to increase the yield and has been extended to the preparation of gap junctions from mouse and bovine liver. Peptide map studies showed that the 27,000-dalton polypeptides present in liver gap junction preparations from all three sources are homologous and are not derived from other polypeptides of higher molecular weight that are observed in cruder preparations. Similar studies with lens fiber junctions demonstrated no homology between liver and lens junction polypeptides. Antibodies to the lens junction polypeptide did not cross-react with the liver gap junction polypeptide, further supporting this conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pitts, J. D. Junctional communication, and cellular growth control. Feldman, J.; Gilula, N. B.; Pitts, J. D. eds. Intercellular junctions and synapses. London: Chapman and Hall; 1978; 61–80.

    Google Scholar 

  2. Wolpert, L. Gap junctions; channels for communication in development. Feldman, J.; Gilula, N. B.; Pitts, J. D. eds.. Intercellular, junctions and synapses. London: Chapman and Hall; 1978; 83–94.

    Google Scholar 

  3. Loewenstein, W. R.. Junctional intercellular communications and the control of growth. Biochem. Biophys. Acta 560: 1–65; 1979.

    PubMed  CAS  Google Scholar 

  4. Lawrence, T. S.; Beers, W. H.; Gilula, N. B. Transmission of hormonal stimulation by cell-to-cell communication. Nature 272; 501–506; 1978.

    Article  PubMed  CAS  Google Scholar 

  5. Rose, B.; Simpson, I.; Loewenstein, W. R. Calcium ion produces graded changes in permeability of membrane channels in cell junction. Nature 267: 625–627; 1977.

    Article  PubMed  CAS  Google Scholar 

  6. Flagg-Newton, J.; Simpson, I.; Lowenstein, W. R. Permeabilityof the cell-to-cell membrane channels in mammalian cell junction. Science 205: 404–407; 1979.

    Article  PubMed  CAS  Google Scholar 

  7. Turin, L.; Warner, A. E.. Intracellular pH in, earlyXenopusembryos: its effect on current flow between blastomeres. J. Physiol. (Lond.) 300: 489–504; 1980.

    CAS  Google Scholar 

  8. Spray, D. C.; Harris, A. L.; Bennett, M. V. L. Voltage dependence of junctional conductance in early amphibian embryos. Science 204: 432–434; 1979.

    Article  PubMed  CAS  Google Scholar 

  9. Revel, J.-P.; Yancey, B.; Meyer, D. Cell junctions and intercellular communication (abstr.). In Vitro 16: 203; 1980.

    Google Scholar 

  10. Kuriyama, H.; Suzuki, H. Changes in electrical properties of rat myometrium during, gestation and following hormonal treatments. J. Physiol. (Lond.) 260: 315–333; 1976.

    CAS  Google Scholar 

  11. Caspar, D. L. D.; Goodenough, D. A.; Makowski, L.; Phillips, W. C. Gap junction structures. I. Correlated electron microscopy and x-ray diffraction. j. Cell Biol. 74: 605–628; 1977.

    Article  PubMed  CAS  Google Scholar 

  12. Makowski, L.; Caspar, D. L. D.; Phillip, W. C.; Goodenough, D. A. Gap junction structures. II. Analysis of the X-ray diffraction data. J. Cell Biol. 74: 629–645; 1977.

    Article  PubMed  CAS  Google Scholar 

  13. Zampighi, G.; Unwin, P. N. T. Two forms of isolated gap junctions. J. Mol. Biol. 135: 451–464; 1979.

    Article  PubMed  CAS  Google Scholar 

  14. Unwin, P. N. T.; Zampighi, G. Structure of the junction between communicating cells. Nature 283: 545–549; 1980.

    Article  PubMed  CAS  Google Scholar 

  15. Goodenough, D. A.; Stoeckenius, W. The isolation of mouse hepatocyte gap junctions. Preliminary chemical characterization and X-ray diffraction. J. Cell Biol. 54: 646–656; 1972.

    Article  PubMed  CAS  Google Scholar 

  16. Evans, W. H.; Gurd, J. W.. Preparation and properties of nexuses and lipid-enriched vesicles from mouse liver plasma membranes. Biochem. J. 128: 691–700; 1972.

    PubMed  CAS  Google Scholar 

  17. Benedetti, E. L.; Emmelot, P. Hexagonal array of subunits in tight junctions separated from isolated rat liver plasma membranes. J. Cell Biol. 38: 15–24; 1968.

    Article  PubMed  CAS  Google Scholar 

  18. Duguid, J. R.; Revel, J.-P. The protein components the gap junctions. Cold Spring Harbor Symp. Quant. Biol. 40: 45–47; 1975.

    Google Scholar 

  19. Culvenor, J. G.; Evans, W. H. Preparation of hepatic gap (communicating) junctions. Identification of the constituent polypeptide subunits. Biochem. J. 168; 475–481: 1977.

    PubMed  CAS  Google Scholar 

  20. Ehrhard, J.-C.; Chauveau, J. The protein component of mouse hepatocyte gap junctions. FEBS Lett. 78: 295–299; 1977.

    Article  Google Scholar 

  21. Hertzberg, E. L.; Gilula, N. B. Isolation and characterization of gap junctions from rat liver. J. Biol. Chem. 254: 2138–2147; 1979.

    PubMed  CAS  Google Scholar 

  22. Henderson, D.; Eibl, H.; Weber, K. Structure and biochemistry of mouse hepatic gap junctions. J. Mol. Biol. 132: 193–218; 1979.

    Article  PubMed  CAS  Google Scholar 

  23. Finbow, M.; Yancey, B.; Jonson, R.; Revel, J.-P. Independent lines of evidence suggesting a major gap junctional protein with molecular weight of 26,000. Proc. Natl. Acad. Sci. USA 77: 970–974; 1980.

    Article  PubMed  CAS  Google Scholar 

  24. Bloemendal, H. The vertebrate eye lens. Science 179; 127–138; 1977.

    Article  Google Scholar 

  25. Alcala, J.; Lieska, N.; Maisel, H. Protein composition of bovine lens cortical fiber cell membranes. Exp. Eye Res. 21: 581–595; 1975.

    Article  PubMed  CAS  Google Scholar 

  26. Broekhuyse, R. M.; Kuhlmann, E. D.; Stols, A. L. H. Lens membranes II. Isolation and characterization of the main intrinsic polypeptide (MIP) of bovine lens fiber membranes. Exp. Eye Res. 23: 365–371; 1976.

    Article  PubMed  CAS  Google Scholar 

  27. Goodenough, D. A. Lens gap junctions: A structural hypothesis for nonregulated low-resistance intercellular pathways. Invest. Ophthalmol. 18: 1104–1122; 1979.

    CAS  Google Scholar 

  28. Laemmli, U. K.; Favre, M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J. Mol. biol. 80: 575–599; 1973.

    Article  PubMed  CAS  Google Scholar 

  29. Cleveland, D. W.; Fischer, S. G.; Kirschner, M. W.; Laemmli, U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J. Biol. Chem. 252: 1102–1106; 1977.

    PubMed  CAS  Google Scholar 

  30. Bordier, C.; Crettol-Jarvinen, A. Peptide mapping of heterogeneous protein samples. J. Biol. Chem. 254: 2565–2567; 1979.

    PubMed  CAS  Google Scholar 

  31. Kagawa, Y.; Racker, E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXV. Reconstruction of vescles catalyzing32P1 adenosine triphosphate exchange. J. Biol. Chem. 246: 5477–5487; 1971.

    CAS  Google Scholar 

  32. Engelhard, V. H.; Guild, B. C.; Helenius, A.; Terhorst, C.; Strominger, J. Reconstitution of purified detergent-soluble HLA-A and HLA-B antigens into phospholipid vesicles. Proc. Natl. Acad. Sci. USA 75: 3230–3234; 1978.

    Article  PubMed  CAS  Google Scholar 

  33. Branton, D. Fracture faces of frozen membranes. Proc. Natl. Acad. Sci. USA 55: 1048–1056; 1966.

    Article  PubMed  CAS  Google Scholar 

  34. Michalke, W.; Loewenstein, W. R. Communication between cells of different types. Nature 232; 121–122; 1971.

    Article  PubMed  CAS  Google Scholar 

  35. Epstein, M. L.; Gilula, N. B. A study of communication specificity between cells in cultures. J. Cell Biol. 75: 769–787; 1977.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This symposium was supported in part by Contract 263-MD-025754 from the National Cancer Institute and the Fogarty International Center.

Research in the laboratory was supported by grants to Dr. Gilula from the National Institute of Health (HL 16507 and GM 24753).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hertzberg, E.L. Biochemical and immunological approaches to the study of gap junctional communication. In Vitro 16, 1057–1067 (1980). https://doi.org/10.1007/BF02619256

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02619256

Key words

Navigation