Skip to main content
Log in

Permeability of the cell-to-cell membrane channel and its regulation in an insect cell junction

  • Symposium
  • Published:
In Vitro Aims and scope Submit manuscript

Summary

Cells of organs and tissues commonly communicate directly with one another via permeable membrane junctions. Cell-to-cell channels, spanning the width of both membranes of a junction, are thought to provide the pathways between the cytoplasms of adjacent cells for the immediate exchange of ions and small molecules. We study these cell-to-cell channels in a cell model system, the salivary gland ofChironomus. Using intracellularly injected fluorescent labelled peptides and oligosaccharides of various molecular dimensions as channel permeability probes we find the channels to have a bore of about 2 nm. The channel permeability can be modulated and, in the extreme, the channels can be closed under various experimental conditions. With the aid of the Ca2+-sensitive photoprotein aequorin as monitor of cytoplasmic free Ca2+ concentration, we show that a determining factor in this modulation of channel permeability is the cytoplasmic free Ca2+ concentration. Moreover, results obtained by injection of different-sized and different-labelled channel permeability probes together with Ca2+ indicate that closure of the individual channels may occur in more than one step, i.e., by a graded reduction of channel bore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Loewenstein, W. R.; Socolar, S. J.; Higashino, S.; Kanno, Y.; Davidson, N. Intercellular communication: Renal, urinary bladder, sensory and salivary gland cells Science 149: 295–298; 1965.

    Article  Google Scholar 

  2. Loewenstein, W. R. Permeable junctions. Cold Spring Harbor Symp. Quant. Biol. 40: 49–63; 1975.

    Google Scholar 

  3. Simpson, I.; Rose, B.; Loewenstein, W. R. Size limit of molecules permeating the junctional membrane channels. Science 195: 294–296; 1977.

    Article  PubMed  CAS  Google Scholar 

  4. Flagg-Newton, J.; Simpson, N.; Loewenstein, W. R. Permeability of the cell-to-cell membrane channels in mammalian cell junction. Science 205: 404–407; 1979.

    Article  PubMed  CAS  Google Scholar 

  5. Flagg.-Newton, J. The permeability of the cell-to-cell membrane channel and its regulation in mammalian cell junctions. In Vitro 16: 1043–1048; 1980.

    PubMed  CAS  Google Scholar 

  6. Brink, P. R.; Dewey, M. M. Evidence for fixed charge in the nexus. Nature 285: 101–102; 1980.

    Article  PubMed  CAS  Google Scholar 

  7. Flagg-Newton, J.; Loewenstein, W. R. Asymmetrically permeable membrane channels in cell junction. Science 207: 771–773; 1980.

    Article  PubMed  CAS  Google Scholar 

  8. Loewenstein, W. R. Permeability of membrane junctions. Ann. N.Y. Acad. Sci. 137: 441–472; 1966.

    Article  PubMed  CAS  Google Scholar 

  9. Shimomura, O.; Johnson, F. H.; Saiga, Y. Microdetermination of calcium by aequorin luminescence. Science 140: 1339–1340; 1963.

    Article  CAS  Google Scholar 

  10. Rose, B.; Loewenstein, W. R. Permeability of a cell membrane junction and free ionized cytoplasmic calcium. A study with aequorin. J. Membr. Biol. 28: 87–119; 1976.

    Article  PubMed  CAS  Google Scholar 

  11. Akerman, K. E. O. Effect of pH and Ca2+ on the retention of Ca2+ by rat liver mitochondria. Arch. Biochem. Biophys. 189: 256–262; 1978.

    Article  PubMed  CAS  Google Scholar 

  12. Carvalho, A.; Sanui, H.; Pace, N. Calcium and magnesium binding properties of cell membrane materials. J. Cell. Comp. Physiol. 62: 311; 1963.

    Article  CAS  Google Scholar 

  13. DeWeer, P. Aspects of the recovery process in nerve. Hunt, C. C. ed. Int. Rev. Science, Physiol. Ser. 1, vol. 3 Neurophysiology; London: Butterworths; 1975: 231–278.

    Google Scholar 

  14. Meech, R. C.; Thomas, R. C. The effect of calcium injection on the intracellular sodium and pH of snail neurons. J. Physiol. 265; 867–879; 1977.

    PubMed  CAS  Google Scholar 

  15. Turin, L.; Warner, A. E. Carbon dioxide reversibly abolishes ionic communication between cells of early amphibian embryo. Nature 270; 56–57; 1977.

    Article  PubMed  CAS  Google Scholar 

  16. Rose, B.; Rick, R. Intracellular pH, intracellular free Ca, and junctional cell-cell coupling. J. Membr. Biol. 44: 377–415; 1978.

    Article  PubMed  CAS  Google Scholar 

  17. Lea, T. Y.; Ashley, C. C. Increase in free calcium in muscle after exposure to CO2. Nature 275: 236–238; 1978.

    Article  PubMed  CAS  Google Scholar 

  18. Rink, T. Y.; Tsien, R. Y.; Warner, A. E. Free calcium inXenopus embryos measured with ion-sensitive electrodes. Nature 283: 658–660; 1980.

    Article  PubMed  CAS  Google Scholar 

  19. Bennett, M. V. L.; Brown, J. E.; Harris, A. L.; Spray, D. C. Electronic junctions betweenFundulus blastomeres: reversible block by low intracellular pH. Biol. Bull. 155: 428a; 1978.

    Google Scholar 

  20. De Mello, W. C. Effect of intracellular injection of calcium and strontium on cell communication in heart. J. Physiol. 250: 231–245; 1975.

    PubMed  Google Scholar 

  21. Dahl, G.; Isenberg, G. Decoupling of heart muscle cells: correlation with increased cytoplasmic calcium activity and with changes of nexus ultrastructure. J. Membr., Biol. 53: 63–75; 1980.

    Article  CAS  Google Scholar 

  22. Petersen, O. H.; Iwatsuki, N. The role of calcium in pancreatic acinar cell stimulus secretion coupling: an electrophysiological approach. Ann. N.Y. Acad. Sci. 307: 599–617; 1978.

    Article  CAS  Google Scholar 

  23. Flagg-Newton, J.; Loewenstein, W. R. Experimental depression of junctional membrane permeability in mammalian cell culture. A study with tracer molecules in the 300–800 dalton range. Membr. Biol. 50: 65–100; 1979.

    Article  CAS  Google Scholar 

  24. Loewenstein, W. R. Cell surface membranes in close contact. Role of calcium and magnesium ions. J. Colloid Interface Sci. 15: 34–46; 1967.

    Article  Google Scholar 

  25. Rose, B.; Simpson, I.; Loewenstein, W. R. Calcium ion produces graded changes in permeability of membrane channels in cell junction. Nature 267: 625–627; 1977.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This symposium was supported, in part by Contract 263-MD-025754 from the National Cancer Institute and the Fogarty International Center. This work was supported by NH Grants 5P1GM23911-07 and 5T32-6M07403-04.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rose, B. Permeability of the cell-to-cell membrane channel and its regulation in an insect cell junction. In Vitro 16, 1029–1042 (1980). https://doi.org/10.1007/BF02619253

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02619253

Key words

Navigation