Skip to main content
Log in

Decoupling of heart muscle cells: Correlation with increased cytoplasmic calcium activity and with changes of nexus ultrastructure

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Purkinje fibers of the sheep heart were exposed to (a) 0.1mm dihydro-ouabain (DHO), followed by (b) 0.1mm DHO in Na-free solution or to (c) 1mm dinitrophenol (DNP). The degree of electrical decoupling was characterized in terms of the inside longitudinal resistancer i as measured with a 3-microelectrode voltage-clamp technique. Procedurea increasedr i by a factor of 3.7±1.1 (mean±sd),b by a factor of 9.8±2.2, whereas inc incomplete voltage control indicated nearly complete uncoupling. Intracellular calcium activity (aCa i ) was monitored with a microelectrode system. At control conditionsaCa i was below 0.1 μm. The procedures listed above increasedaCa i to (a) 4±1.5 μm, (b) 8±2 μm, and (c) 36±12 μm. The increase ofaCa i was in good correlation with the changes in core resistance. Effects on nexus ultrastructure, investigated with freeze-fracture techniques, are shown in histograms. At control conditions, the particle diameter distributed around a single peak (8.3±0.5 nm). Proceduresb andc induced a second population at 10.8 nm; increased decoupling reduced the control population in favor of the 10.8 nm population. Decoupling enlarged the width of the nexus gap by a factor of 1.6; again, the control population decreased in favor of a new population. In the decoupled state the height of the particle was smaller. Pits on the E-face displayed a more regular array and a nearly unchanged center-to-center spacing. Separation into several peaks was not possible due to scatter of the data.

We interpret the findings to mean that elevatedaCa i induces a conformational change of the nexus subunits which corresponds to a transition from an open to a closed state. The conformational change can be formally described by a particle contraction which disrupts the continuity with the particle of the adjacent membrane. Purkinje fibers exposed to DNP for 1 hr showed thinned (7.7±0.5 mm) and elongated particles. We suggest that this is a secondary event and not a precursor of functional uncoupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, R.H., Chandler, W.R., Hodgkin, A.L. 1970. Voltage clamp experiments in striated muscle fibers.J. Physiol. (London) 208:607

    Google Scholar 

  • Asada, Y., Bennett, M.V.L. 1971. Experimental alteration of coupling resistance at an electronic synapse.J. Cell Biol. 49:159

    PubMed  Google Scholar 

  • Ashraf, M., Halverson, C. 1978. Ultrastructural modifications of nexuses (gap junctions) during early myocardial ischemia.J. Mol. Cell. Cardiol. 10:263

    PubMed  Google Scholar 

  • Barr, L., Dewey, M.M., Berger, W. 1965. Propagation of action potentials and the studies of the nexus in cardiac muscle.J. Gen. Physiol. 48:797

    PubMed  Google Scholar 

  • Bates, R.G. 1973. Ion activity scales for use with selective ionsensitive electrodes.Pure Appl. Chem. 36:407

    Google Scholar 

  • Bennett, M.V.L. 1973. Function of electric junctions in embryonic and adult tissue.Fed. Proc. 32:66

    Google Scholar 

  • Blaustein, M.P. 1974. The interrelationship between sodium and calcium fluxes across cell membranes.Rev. Physiol. Biochem. Pharmacol. 70:33

    PubMed  Google Scholar 

  • Branton, D., Bullivant, S., Gilula, N., Karnovsky, M., Moor, H., Muehlethaler, K., Northcote, N., Packer, L., Satir, B., Satir, P., Speth, V., Weinstein, R. 1975. Freeze-etching nomenclature.Science 190:54

    PubMed  Google Scholar 

  • Caesar, R., Edwards, G.A., Ruska, H. 1958. Electron micrsoscopy of the impulse conducting system of the sheep heart.Z. Zellforsch. Mikrosk. Anat. 48:698

    PubMed  Google Scholar 

  • Caspar, D.L.D., Goodenough, D.A., Makowski, L., Phillips, W.C. 1977. Gap junction structures: I. Correlated electron microscopy and x-ray diffraction.J. Cell. Biol. 74:605

    PubMed  Google Scholar 

  • Deltmer, J.W., Ellis, D. 1978. The intracellular sodium activity of cardiac Purkinje fibres during inhibition and reactivation of the Na−K pump.J. Physiol. (London) 284:241

    Google Scholar 

  • Délèze, J. 1970. The recovery of resting potential and input resistance in sheep heart injured by knife or laser.J. Physiol. (London) 208:547

    Google Scholar 

  • DeMello, W.C. 1975. Effect of intracellular injection of calcium and strontium on cell communication in heart.J. Physiol. (London) 25:231

    Google Scholar 

  • Dewey, M.M., Barr, L. 1962. Intercellular connection between smooth muscle cells: The nexus.Science 137:670

    Google Scholar 

  • Ferrier, G.R., Saunders, J.H., Mendez, C. 1973. A cellular mechanism for the generation of ventricular arrhythmias by acetylstrophanthidin.Circul. Res. 32:600

    Google Scholar 

  • Flagg-Newton, J., Loewenstein, W.R. 1979. Experimental depression of junctional membrane permeability in mammalian cell culture. A study with tracer molecules in the 300 to 800 dalton range.J. Membrane Biol. 50:65

    Google Scholar 

  • Furshpan, E.F., Potter, D.D. 1968. Low resistance junctions between cells in embryos and tissue culture.Curr. Top. Dev. Biol. 3:95

    PubMed  Google Scholar 

  • Gilula, N.B., Epstein, M.L. 1976. Cell-to-cell communication, gap junctions and calcium.Symp Soc. Exp. Biol. 30:257

    Google Scholar 

  • Isenberg, G. 1977. Cardiac Purkinje fibers: Resting, action and pacemaker potential under the influence of [Ca2+] i modified by intracellular-injection technique.Pfluegers Arch. 371:51

    Google Scholar 

  • Isenberg, G. 1979. Risk and advantage of using strongly bevelled microelectrodes for electrophysiological studies in cardiac Purkinje fibers.Pfluegers Arch. 380:91

    Google Scholar 

  • Isenberg, G., Trautwein, W. 1974. The effect of dihydro-ouabain and lithium ions on the outward current in cardiac Purkinje fibers. Evidence for electrogenicity of active transport.Pfluegers Arch. 350:41

    Google Scholar 

  • Isenberg, G., Dahl, G. 1978. Ultrastructural changes of the gap junction correlated with increased longitudinal resistance (Purkinje fibre).Pfluegers Arch. 373:R8

    Google Scholar 

  • Jack, J.J.B., Noble, D., Tsien, R.W. 1975. Electrical Current Flow in Excitable Cells. Clarendon Press, Oxford

    Google Scholar 

  • Langer, G.A., Serena, S.D. 1970. Effects of strophanthidin upon contraction and ionic exchange in rabbit ventricular myocardium: Relation to control of active state.J. Mol. Cell. Cardiol. 1:65

    PubMed  Google Scholar 

  • Loewenstein, W.R. 1966. Permeability of membrane junctions.Ann. N.Y. Acad. Sci. 137:441

    PubMed  Google Scholar 

  • Loewenstein, W.R. 1967. Cell surface membranes in close contact. Role of calcium and magnesium ions.J. Colloid Interface Sci. 25:34

    PubMed  Google Scholar 

  • Loewenstein, W.R. 1975. Permeable junctions. Cold Spring Harbor Symp. Quant. Biol.40:49

    Google Scholar 

  • Loewenstein, W.R., Kanno, Y., Socolar, S.J. 1978. Quantum jumps of conductance during formation of membrane channels at cell-cell junction.Nature (London) 274:133

    Google Scholar 

  • Lux, H.D., Neher, E. 1973. The equilibration time course of [K] o in the cat aortex.Exp. Brain Res. 17:190

    PubMed  Google Scholar 

  • McCallister, L.P., Munger, B.L., Neely, J.R. 1977. Electron microscopic observations and acid phosphatase activity in the ischemic rat heart.J. Mol. Cell. Cardiol. 9:353

    PubMed  Google Scholar 

  • McNutt, N.S., Weinstein, R.S. 1973. Membrane ultrastructure at mammalian intercellular junctions.Prog. Biophys. Mol. Biol. 26:45

    PubMed  Google Scholar 

  • Meier, P.C., Ammann, D., Osswald, H.F., Simon, W. 1977. Ionselective electrodes in clinical chemistry.Med. Prog. Technol. 5:1

    PubMed  Google Scholar 

  • Mobley, B.A., Page, E. 1972. The surface area of sheep cardiac Purkinje fibers.J. Physiol. (London) 220:547

    Google Scholar 

  • Oehme, M., Kessler, M., Simon, W. 1976. Neutral carrier Ca2+-microelectrode.Chimia 30: 204

    Google Scholar 

  • Pappas, G.D., Asada, Y., Bennett, M.V.L. 1971. Morphological correlates of increased coupling resistance at an electric synapse.J. Cell Biol. 49:173

    PubMed  Google Scholar 

  • Peracchia, C. 1977. Gap junctions structural changes after uncoupling procedures.J. Cell Biol. 72:628

    PubMed  Google Scholar 

  • Peracchia, C., Dulhunty, A.F. 1976. Low resistance junctions in crayfish structural changes with functional uncoupling.J. Cell. Biol. 70:419

    PubMed  Google Scholar 

  • Politoff, A.L., Socolar, S.J., Loewenstein, W.R. 1969. Permeability of a cell membrane junction. Dependence on energy metabolism.J. Gen. Physiol. 53: 498

    PubMed  Google Scholar 

  • Raviola, E., Goodenough, D.A., Raviola, G. 1978. The native structure of gap junctions rapidly frozen at 4°K.J. Cell. Biol. 79:229a

    Google Scholar 

  • Reuter, H., Seitz, N. 1968. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition.J. Physiol. (London) 195: 451

    Google Scholar 

  • Revel, F.P. 1968. Studies on the fine structure of intercellular junctions. Proceedings 26th Meeting of Electron Microscopy Society of America. p. 40. Claitors, Baton Rouge

    Google Scholar 

  • Rose, B., Loewenstein, W.R. 1976. Permeability of a cell junction and the local cytoplasmic free ionized calcium concentration: A study with aequorin.J. Membrane Biol. 28:87

    Google Scholar 

  • Rose, B., Simpson, I., Loewenstein, W.R. 1977. Calcium ion produces graded changes in permeability of membrane channel in cell junction.Nature (London) 267:625

    Google Scholar 

  • Simon, W., Ammann, D., Oehme, M., Morf, W.E. 1978. Calcium sensitive electrodes.Ann. N.Y. Acad. Sci. 307:52

    Google Scholar 

  • Socolar, S.J., Loewenstein, W.R. 1979. Methods for studying transmission through permeable cell-to-cell junctions.In: Methods in Membrane Biology. E.D. Korn, editor. Vol. 10, pp. 121–177. Plenum, New York

    Google Scholar 

  • Volkmer, I., Dahl, G., Raman, K., Stapenhorst, K. 1977. Cardioplegia according to Bretschneider for valve replacement: Clinical experiences and electronmicroscopical results.Thoraxchirurgie 25:451

    Google Scholar 

  • Weidmann. 1952. The electrical constants of Purkinje fibres.J. Physiol. (London) 118:348

    Google Scholar 

  • Weingart, R. 1977. The actions of ouabain on intercellular coupling and conduction velocity in mammalian ventricular muscle.J. Physiol. (London) 254:341

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahl, G., Isenberg, G. Decoupling of heart muscle cells: Correlation with increased cytoplasmic calcium activity and with changes of nexus ultrastructure. J. Membrain Biol. 53, 63–75 (1980). https://doi.org/10.1007/BF01871173

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871173

Key words

Navigation