Skip to main content
Log in

Evaluation of methods for determining 6-hydroxydopamine cytotoxicity

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

The toxic effects of 6-hydroxydopamine on the human neuroblastoma cell line SK-N-SH-SY5Y (SY5Y) and the Chinese hamster ovary (CHO) cell line were measured with five viability assays. Four of the assays (attachment efficiency, plating efficiency, amino acid incorporation into acid-precipitable proteins, and Trypan Blue dye exclusion) showed higher drug susceptibility in SY5Y cells than CHO cells. Only growth inhibition (proliferation index) gave results indicating greater sensitivity in CHO cells. Over a time span of 48 hr, injured cell populations lost vital functions in the following order: attachment ability, amino acid incorporation, proliferative capacity, and dye exclusion. Recovery of each of the functions occurred in sublethally injured populations. Monitoring the extinction and recovery of vital functions permitted the accurate determination of a drug concentration (30 μg/ml) selectively toxic for SY5Y cells. A strong correlation was noted between relative values for amino acid incorporation 3 hr after drug treatment, attachment efficiency at 24 hr, and dye exclusion at 24 and 48 hr. We concluded that Trypan Blue dye exclusion and amino acid incorporation were suitable methods for comparing the effects of cytotoxins on different cell lines, provided they were performed at the appropriate time after treatment with the toxin. The combined techniques yield both population and individual cell data, are simple to do, and are applicable to nondividing cell populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levi-Montalcini, R.; Angeletti, P. U. Sympathetic nerve destruction in newborn mammals by 6-hydroxydopamine. Proc. Natl. Acad. Sci. U.S.A. 65: 114–121; 1979.

    Google Scholar 

  2. Tranzer, J. P.; Thoenen, H. An electron microscopic study of selective, acute degeneration of sympathetic nerve terminals after administration of 6-hydroxydopamine. Experientia 24: 155–156; 1968.

    Article  PubMed  CAS  Google Scholar 

  3. Cronemeyer, R. L.; Thuillez, P. E.; Shows, T. B.; Morrow, J. 6-Hydroxydopamine sensitivity in mouse neuroblastoma and neuroblastoma x L-cell hybrids. Cancer Res. 34: 1652–1657; 1974.

    PubMed  CAS  Google Scholar 

  4. Tiffany-Castiglioni, E.; Perez-Polo, J. R. The role of nerve growth factorin vitro in cell resistance to 6-hydroxydopamine toxicity. Exp. Cell Res. 121: 179–189; 1979.

    Article  PubMed  CAS  Google Scholar 

  5. Pappenheimer, A. M. Experimental studies upon lymphocytes I. The reactions of lymphocytes under various experimental conditions. J. Exp. Med. 25: 633–650; 1917.

    Article  CAS  Google Scholar 

  6. DeBault, L. E.; Millard, S. A. Inhibition of growth by 6-hydroxydopamine in cultured cells of neuronal and non-neuronal origin. Cancer Res. 33: 745–749; 1973.

    CAS  Google Scholar 

  7. Prasad, K. N. Effect of dopamine and 6-hydroxydopamine on mouse neuroblastoma cellsin vitro. Cancer Res. 31: 1457–1460; 1971.

    PubMed  CAS  Google Scholar 

  8. Angeletti, P. U.; Levi-Montalcini, R. Cytolytic effect of 6-hydroxydopamine on neuroblastoma cells. Cancer Res. 30: 2863–2869; 1970.

    PubMed  CAS  Google Scholar 

  9. Sachs, C.; Jonsson, G. Commentary: mechanisms of action of 6-hydroxydopamine. Biochem. Pharmacol. 24: 1–8; 1975.

    Article  PubMed  CAS  Google Scholar 

  10. Craven, C. The survival of stocks of HeLa cells maintained at 70°C. Exp. Cell Res. 19: 164–174; 1960.

    Article  PubMed  CAS  Google Scholar 

  11. Medzihradsky, F.; Marks, M. S. Measures of viability in isolated cells. Biochem. Med. 13: 164–174; 1975.

    Article  PubMed  CAS  Google Scholar 

  12. Dolan, M. F. Viability assays—a critique. Fed. Proc. Suppl. 24, 15: S275–279; 1965.

    CAS  Google Scholar 

  13. Dickson, J. A. Uptake of non-metabolizable amino acids as an index of cell viabilityin vitro. Exp. Cell Res. 61: 235–245; 1970.

    Article  PubMed  CAS  Google Scholar 

  14. Tennant, J. R. Evaluation of the Trypan Blue technique for determination of cell viability. Transplantation 2: 685–694; 1964.

    Article  PubMed  CAS  Google Scholar 

  15. Puck, T. T.; Marcus, P. I. A rapid method for viable cell titration and clone production with HeLa cells in tissue culture: the use of X-irradiated cells to supply conditioning factors. Proc. Natl. Acad. Sci. U.S.A. 41: 432–437; 1955.

    Article  PubMed  CAS  Google Scholar 

  16. Hanks, J. H.; Wallace, J. H. Determination of cell viability. Proc. Soc. Exp. Biol. Med. 98: 188–192; 1958.

    PubMed  CAS  Google Scholar 

  17. Perez-Polo, J. R.; Werrbach-Perez, K.; Tiffany-Castiglioni, E. A human clonal cell line model of differentiating neurons. Dev. Biol. 71: 341–355; 1979.

    Article  PubMed  CAS  Google Scholar 

  18. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275; 1951.

    PubMed  CAS  Google Scholar 

  19. Barranco, S. C.; Novak, J. K.; Humphrey, R. M. Response of mammalian cells following treatment with bleomycin and 1, 3-bis (2-chloroethyl)-1-nitrosourea during plateau phase. Cancer Res. 33: 691–694; 1973.

    PubMed  CAS  Google Scholar 

  20. Couzin, D. Plating efficiency measurements and the experimental control of ageing of adult human skin fibroblasts in vitro. Exp. Cell Res. 116: 115–126; 1978.

    Article  PubMed  CAS  Google Scholar 

  21. Hayflick, L. Subculturing human diploid fibroblast cultures. Kruse, P. F., Jr.; Patterson, M. K. Jr. eds. Tissue culture: methods and applications. New York: Academic Press; 1973: 220–223.

    Google Scholar 

  22. Phillips, H. J. Dye exclusion tests for cell viability. Kruse, P. F., Jr.; Patterson, M. K., Jr. eds. Tissue culture: methods and applications. New York: Academic Press; 1973: 406–408.

    Google Scholar 

  23. Schrek, R.In vitro methods for measuring viability and vitality of lymphocytes exposed to 45°, 47°, and 50°C. Cryobiology 2: 122–128; 1965.

    Article  PubMed  CAS  Google Scholar 

  24. Tullis, J. L. Preservation of leucocytes. Blood 8: 563–575; 1953.

    PubMed  CAS  Google Scholar 

  25. Eaton, M. D.; Scala, A. R.; Jewell, M. Methods for measuring viability of ascites cells: dye exclusion and respiration as affected by depeletion, poisons, and viruses. Cancer Res. 19: 945–953; 1959.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by an NIH National Research Service Award GM07204 to E. T. C., a gift from the Lola-Wright Foundation, NINCDS Grants NS14034 and NS15234, Robert Welch Grant H698, and an RCDA (NS00213) to J. R. P.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiffany-Castiglioni, E., Perez-Polo, J.R. Evaluation of methods for determining 6-hydroxydopamine cytotoxicity. In Vitro 16, 591–599 (1980). https://doi.org/10.1007/BF02618384

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02618384

Key words

Navigation