Skip to main content
Log in

Abstract

A pervasive problem in dealing with fractured rocks is the importance of the flow of ground water through the discontinuities. This paper describes the results of recent work in this laboratory to investigate this problem. A much better understanding of the physics of fluid flow in a natural fracture from a sample of granite has been obtained from metal casts of the complex topography of the surfaces of the fracture as it is subjected to normal stresses up to 85 MPa. Contact area within the deforming aperture increases up to 30 percent and produces a flow regime that cannot be described by the cubic law. An investigation of flow in a network of fractures using a new numerical technique has been carried out to determine the effect of length and density of fractures on permeability. Networks with shorter fracture lengths and higher density will have lower permeabilities and will behave less like porous media than networks with longer fracture lengths and lower density. As fracture length increases, permeability approaches a maximum that can be predicted on the basis of infinite length fractures. A new analytical solution for transient flow to a borehole that penetrates a fracture dominated rock mass is summarized. A new derivative method of analyzing pressure transients from this solution is discussed and enables one to distinguish a fracture dominated system from one that exhibits double-porosity behavior.

Résumé

Dans l'étude des roches fracturées, l'importance de l'écoulement de l'eau souterraine dans les discontinuites est un problème qui revient toujours. Cet article décrit les résultats de travaux récents du Laurence Berkeley Laboratory dans ce domaine. Notre compréhension de la physique de l'écoulement fluide dans une fracture naturelle d'un échantillon de granite a été largement améliorée en prenant des empreintes métalliques de la topographie complexe des épontes de la fracture soumise à des contraintes normales allant jusqu'à 85 MPa. L'augmentation de l'aire de contact entre les épontes atteint jusqu'à 30%, et le régime d'écoulement ne peut plus alors être décrit par la loi, cubique. Une nouvelle technique numérique a été utilisée pour l'étude de l'influence de la longueur et de la densité des fractures sur la perméabilité du réseau qu'elles constituent. Un réseau dense de fractures courtes est moins perméable et a un comportement plus éloigné du milieu continu qu'un réseau moins dense de fractures plus longues. Lorsque la longueur des fractures augmente, la perméabilité tend vers un maximum qui peut être prédit à l'aide du modéle des fractures infinies. Une solution originale de l'écoulement en régime transitoire vers un sondage traversant un milieu rocheux dont la fracturation domine le comportement est exposée brièvement. Une nouvelle méthode d'analyse des pressions en régime transitoire tirée de cette solution est discutée. Elle permet de distinguer un systême dont la fracturation domine le comportement d'un système à double porositè.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b:

fracture aperture (L)

C:

constant (l/L)

c:

compressibility (T2L/M)

c1 :

total compressibility (T2L/M)

h:

formation thickness (L)

‡h:

change in hydraulic head (L)

J:

dimensionless potential gradient

Kg :

permeability in direction of gradient (L/T)

k:

permeability (L2)

l:

fracture length (L)

l :

mean fracture length (L)

n:

number of fractures intersecting weelbore

p:

pressure (M/T2L)

Δp:

change in pressure (M/T2L)

PD :

dimensionless pressure (2πk‡p/qμ)

Q:

fracture flow rate (L3/T)

Qin :

specific flux into fracture system (L/T)

q:

well flow rate (L3/T)

r:

radial distance (L)

rC :

dimensionless radius (rw/rf)

rD :

dimensionless radius (r/rf)

t:

time (T)

tD :

dimensionless time (kt/ϕ μcr2)

α:

hydraulic diffusivity (L2/T)

α c :

dimensionless diffusivity

β:

dimensionless conductivity

Γ:

Euler's constant (0.57721566)

γ:

angle or rotation (degrees)

ϑ:

angle between fracture pole and borehole axis (degrees)

γ A :

areal fracture density (l/L2)

γ L :

linear fracture density (l/L)

ϕ:

porosity

μ:

fluid viscosity (M/LT)

f:

inner region

i:

initial

rf :

based on rf

w:

wellbore

1:

region 1

2:

region 2

References

  • AGARWAL R.G., AL-HUSSAINY R. and RAMEY H.J.JR. (1970): An investigation of wellbore storage and skin effect in unsteady liquid flow: I. Analytical treatment.Soc. Pet. Eng. J. (Sept. 1970), p. 279–290, Trans. Amer. Inst. Min Met. Eng., vol. 249.

  • BAECHER G.B. LANNEY N.A. and EINSTEIN H.H. (1977): Statistical description of rock properties and sampling,Proc. 18th U.S. Rock Mech. Symposium, p. 5C1-1-5C1-8.

  • BARENBLATT G.E., ZHELTOV I. P. and KOCHINA I. N. (1960): Basic concepts in the theory of homogeneous liquids in fissured rocks,J. Appl. Math. Mech. (USSR), vol. 24, no. 5, p. 1286–1303.

    Article  Google Scholar 

  • BEAR J. (1972):Dynamics of Fluids in Porous media, 764 pp., Elsevier, New York.

    Google Scholar 

  • BIXEL H.C. and VAN POOLEN H.K. (1970): Pressure drawdown and buildup in the presence of radial discontinuities,Soc. Pet. Eng. J. (Sept. 1967), p. 301–309, Trans Amer. Inst. Min. Met. Eng., Vol. 240.

  • BOURDET D., WHITTLE T.M. DOUGLAS A.A. and PIRARD Y.M. (1983): A new set of type curves simplifies well test analysis,World Oil, May 1983.

  • BOUSSINESQ J. (1868): Mémoire sur l'influence des frottements dans les mouvements réguliers des fluides,J. Math. Pure Appl., ser. 2 vol. 13, p. 377–424.

    Google Scholar 

  • CINCO-LEY H., SAMANIEGO-V. F. and DOMINGUEZ-A. N. (1976): Transient Pressure Behavior for a Well with a Finite Conductivity Vertical Fracture, paper SPE 6014 presented at SPE-AIME 51st Annual Fall Technical Conference and Exhibition, Soc. Pet. Eng., New Orleans, Oct. 3–6, 1976.

  • CINCO-LEY H., SAMANIEGO-V. F. and DOMINGUEZ-A. N. (1978): Transient pressure behavior for a well with a finite conductivity vertical fracture,Soc. Pet. Eng. J. (Aug. 1978), p. 253–264.

  • CINCO-LEY H. and SAMANIEGO-V. F. (1981): Transient pressure analysis for fractured wells,J. Pet. Tech. (Sept. 1981), p. 1749–1766; Trans. Amer. Inst. Min. Met. Eng., vol. 271.

  • EARLOUGHER R.C. (1977):Advances in Well Test Analysis, 264 pp. SPE Monograph Series, Soc. Pet. Eng. of AIME, New York.

    Google Scholar 

  • ENGELDER T. and SCHOLZ C.H. (1981): Fluid flow along very smooth joints at effective pressures up to 200 megapascals,Geophys. Monograph 24, edited by N.L. Carter et al., Amer. Geophys. Union, p. 147–152.

  • ENGLMAN R., GUR Y., and JAEGER Z. (1983): Fluid flow through a crack network in rocks.J. Appl. Mech., vol. 50, p. 707–711.

    Article  Google Scholar 

  • FERRIS J., KNOWLES D.B., BROWN R.H. and STALLMAN R.W. (1962):Theory of Aquifer Tests, 174 pp., U.S. Geol. Surv., Water Supply Paper 1536E.

  • GALE J.E. (1982): The effects of fracture type (induced versus natural) on the stress-fracture closure-fracture permeability relationships,Issues in Rock mechanics, Proc. 23rd Symposium on Rock Mechanics, University of California, Berkeley, p. 290–298.

  • GRINGARTEN A.C., RAMEY H.J. and RAGHAVAN R. (1972):Pressure Analysis for Fractured Wells, paper SPE 4051 presented at SPE-AIME Annual Fall Mtg., San Antonio, Oct. 8–11, 1972.

  • GRINGARTEN A.C. and RAMEY H.J.JR, (1974): Unsteady-state pressure distributions created by a well with a single infinite-conductivity vertical fracture,Soc. Pet. Eng. J. (Aug. 1974), p. 347–360, Trans. Amer. Inst. Min. Met Eng., vol. 257.

  • GRINGARTEN A.C., RAMEY H.J. and RAGHAVAN R. (1975): Applied pressure analysis for fractured wells,J. Pet. Tech, (July 1975), p. 887–892, Trans. Amer. Inst. Min. Met. Eng., vol. 259.

  • GRINGARTEN A.C., BOURDET D.P., LANDEL P.A., and KNIAZEFF V. (1979): A Comparison Between Different Skin and Wellbore Storage Type-Curves for Early-Time Transient Analysis, paper SPE 8205 presented at 54th Annual Fall Technical Conference and Exhibition, Soc. Petr. Eng., Las Vegas, Sept. 23–26, 1979.

  • GRINGARTEN A.C. (1984): Interpretation of tests in fissured and multilayered reservoirs with double-porosity behavior: Theory and practice,J. Pet. Tech. (Apr. 1984), p. 549–564, Trans. Amer. Inst. Min. Met. Eng., vol. 277.

  • HURST W. (1960): Establishment of the skin effect and its impediment to fluid flow in a wellbore,Pet. Eng., vol. 25 p. B-6.

    Google Scholar 

  • IWAI K. (1976):Fundamental Studies of Fluid Flow Through a Single Fracture, Ph.D. Thesis, 208 pp., University of California, Berkeley.

    Google Scholar 

  • JACOB C.E. (1947): Drawdown test to determine effective radius of artesian wells,Amer. Soc. Civil Eng. Trans., vol. 112, p. 1047–1070.

    Google Scholar 

  • KARASAKI K., LONG J.C.S. and WITHERSPOON P.A. (1985):A New Analytical Model for Fracture Dominated Reservoirs, paper SPE 14171 presented at 60th Annual Technical Conference and Exhibition, Soc. Pet. Eng., Las Vegas, Sept. 22–25, 1985.

  • KARASAKI K. (1986):Well Test Analysis in Fractured Media, Ph.D. Thesis, 239 pp., University of California, Berkeley.

    Google Scholar 

  • KAZEMI H. (1969): Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution,Soc. Pet. Eng. J. (Dec. 1969), p. 451–462, Trans. Amer. Inst. Min. Met. Eng., vol. 246.

  • LAI C.H., BODVARSSON G.S., TSANG C.F. and WITHERSPOON P.A. (1983):A New Model for Well Test, Data Analysis for Naturally Fractured Reservoirs, paper SPE 11688 presented at 1983 California Regional Mtg., Soc. Pet. Eng., Ventura, Mar. 23–25, 1983.

  • LARKIN B.K. (1963): Solutions to the diffusion equation for a region bound-by a circular discontinuity,Soc. Pet. Eng. J. (June 1963), p. 113–115, Trans. Amer. Inst. Min. Met. Eng., vol. 228.

  • LOMIZE G.M., (1951):Flow in Fractured Rocks (in Russian), Gosenergoizdat, Moscow.

    Google Scholar 

  • LONG J.C.S., (1983):Investigation of Equivalent Porous Medium Permeability in Networks of Discontinuous Fractures, Ph.D. Thesis, 277 pp., University of California, Berkeley.

    Google Scholar 

  • LONG J.C.S., REMER J.S., WILSON C.R. and WITHERSPOON P.A. (1982): Porous media equivalents for networks of discontinuous fractures,Water Resour. Res., vol. 18, no. 3, p. 645–658.

    Google Scholar 

  • LONG J.C.S. and WITHERSPOON P.A. (1985): The relationship of the degree of interconnection to permeability in fracture networks,J. Geophys. Res., vol. 90, no. B4, p. 3087–3098.

    Google Scholar 

  • LONG, J.C.S., GILMOUR P. and WITHERSPOON P.A. (1985): A model for steady fluid flow in random three-dimensional networks of disc-shaped fractures,Water Resour. Res., vol. 21, no. 8, p. 1105–1115.

    Google Scholar 

  • LONG J.C.S. and BILLAUX D.M. (1986): From Field Data to Fracture Network Modeling—An Example Incorporating Spatial Structure, submitted toWater Resour. Res.

  • LONG J.C.S. (1986): Permeability of Statisticaly Homogeneous Fracture Networks, paper in preparation.

  • LOUIS C. (1969): A study of groundwater flow in jointed rock and its influence on the stability of rock masses,Rock Mech. Res. Rep. 10, 90 pp., Imperial College, London.

    Google Scholar 

  • MADDEN T. (1983): Microcrack connectivity in rocks: A renor-malization group approach to the critical phenomena of conduction and failure in crystalline rocks,J. Geophys. Res., vol. 88, p. 585–592.

    Google Scholar 

  • MARCUS H. (1962): The permeability of a sample of an anisotropic porous medium,J. Geophys. Res. vol. 67, p. 5215–5225

    Google Scholar 

  • MARCUS H. and EVANSON D.E. (1961):Directional Permeability in Anisotropic Porous Media, Contribution 31, 105 pp. Water Resouc. Center, University of California, Berkeley.

    Google Scholar 

  • ODEH A.S. (1965): Unsteady-state behavior of naturally fractured reservoirs,Soc. Pet. Eng. J. (Mar. 1965), p. 60–64, Trans., Amer. Inst. Min. Met. Eng., vol. 234.

  • POLUBARINOVA-KOCHINA P.Ya., (1962):Theory of Groundwater Movement translated from Russian by J.M.R. DeWiest, 613 pp., Princeton University Press, Princeton, N.J.

    Google Scholar 

  • PYRAK L.J., MYER L.R. and COOK N.G.W. (1985): Determination of Fracture Void Geometry and Contact Area at Different Effective Stress, paper presented at Fall 1985 Mtg., Amer. Geophys. Union, San Francisco, Dec. 9–12, 1985.

  • PYRAK-NOLTE L.J., COOK N.G.W. and MYER L.R. (1986): The Effect of Stress on the Hydraulic, Mechanical and Seismic Properties of a Natural Fracture, paper presented at Spring 1986 Mtg., Amer. Geophys. Unon, Baltimore, Apr. 19–23 1986.

  • RAMEY H.J. (1970): Approximate solutions for unsteady liquid flow in composite reservoirs,J. Canadian Pet. Tech. (Mar. 1970), p. 32–37.

  • RAMEY H.J.Jr. (1982): Well-loss function and the skin effect: A review,Recent Trends in Hydrogeology, ed. by T.N. Narasimhan, Geol. Soc. Amer. Special Paper 189, p. 265–271.

  • RAGHAVAN R. (1977): Pressure behavior of wells intercepting fractures,Proc. Invitational Well-Testing Symposium, Berkeley, Oct. 19–21, 1977, Lawrence Berkeley Lab. Rep. LBL-7027 (Mar. 1977), p. 117–160.

  • ROBERTSON A. (1970): The interpretation of geological factors for use in slope stability,Proc. Symposium on the Theoretical Background to the Planning of Open Pit Mines with Special Reference to Slope Stability, South African Institute of Mining and Metallurgy, Johannesburg, p. 55–71.

  • ROBINSON P.C. (1982):Connectivity of Fracture Systems-A Percolation Theory Approach, Theoretical Physics Division, AERE Harwell, Oxfordshire.

    Google Scholar 

  • ROMM E.S. (1966): Flow Characteristics of Fractured Rocks (in Russian), 283 pp., Nedra, Moscow.

    Google Scholar 

  • SAGAR B. and RUNCHAL A. (1977): Permeability of fractured rock: Effect of fracture size and data uncertainties,Water Resour. Res., vol. 18, no. 2, p. 266–274.

    Article  Google Scholar 

  • SCHEIDEGGER A.E. (1954): Directional permeability of porous media to homogeneous fluids,Geofis. Pura Appl., vol. 28, p. 75–90.

    Article  Google Scholar 

  • SNOW D.T. (1965):A Parallel Plate Model of Fractured Permeable Media, Ph.D. Thesis, 331 pp., University of California, Berkeley.

    Google Scholar 

  • SNOW D.T. (1969): Anisotropic permeability of fractured media,Water Resour. Res., vol. 5, no. 6, p. 1273–1289.

    Article  Google Scholar 

  • STRETSOVA T.D. (1983): Well pressure behavior of a naturally fractured reservoir,Soc. Pet. Eng. J. (Oct. 1983), p. 769–780, Trans. Amer. Inst. Min. Met. Eng., vol. 275.

  • THEIS C.V. (1935): The relationship between the lowering of piezometric surface and the rate and duration of discharge using ground-water storage,Trans. Amer. Geophys. Union, vol. 16, p. 519–524.

    Google Scholar 

  • VAN EVERDINGEN A.F. and HURST W. (1949): The application of the Laplace transformation to flow problems in reservoirs,Petroleum Development and Technology 1949, p. 305–324, Trans. Amer. Inst. Min. Met. Eng., vol. 186.

  • WARREN J.E. and ROOT P.J. (1963): Behavior of naturally fractured reservoirs,Soc. Pet. Eng. J. (Sept. 1963), p. 245–255, Trans. Amer. Inst. Mim. Met. Eng., vol. 228.

  • WATTENBARGER R.A. and RAMEY H.J.Jr. (1970): An investigation of wellbore storage and skin effect in unsteady liquid flow: II. Finite difference treatment,Soc. Pet. Eng. J. (Sept. 1970), p. 291–297. Trans. Amer. Inst. Min. Met. Eng., vol. 249.

  • WILSON C.R. (1970):An Investigation of Laminar Flow in Fractured Porous Rocks, Ph.D. Thesis, 178 pp., University of California, Berkeley.

    Google Scholar 

  • WITHERSPOON P.A., WANG J.S.Y., IWAI K. and GALE J.E., (1980): Validity of cubic law for fluid flow in a deformable fracture.Water Resour. Res., vol. 16, no. 6, p. 1016–1024.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witherspoon, P.A. Flow of groundwater in fractured rocks. Bulletin of the International Association of Engineering Geology 34, 103–115 (1986). https://doi.org/10.1007/BF02590241

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02590241

Keywords

Navigation