Skip to main content
Log in

A new mechanosensory organ on the anterior spinnerets of the spiderCupiennius salei (Araneae, Ctenidae)

  • Original Article
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

We describe hitherto unknown mechanoreceptors on the anterior spinnerets of the spiderCupiennius salei. These receptors are found at the base of the spigots of the major ampullate glands which produce the dragline used by the spider as a safety thread in various behavioral situations. There are 40–60 mechanoreceptors associated with two spigots of each anterior spinneret. They are likely to provide information on the forces pulling on the dragline and also on its orientation in space. A single sensillum consists of a hole in the cuticle covered by a thin cuticular membrane. It much resembles spider slit sensilla, which are known to detect strains in the exoskeleton. Each sensillum is supplied by two dendrites most likely belonging to two bipolar sensory cells. One of the dendrites ends at the covering membrane and the other more proximally. The sensilla are arranged with their long axes roughly parallel to the circumference of the spigots. External forces, transmitted by the dragline, result in deformation of the central part of the cuticular plate at the base of the spigots and thus in stimulation of the sensilla. This is shown electrophysiologicallly. Considering their morphology, topography, and electrophysiology, these mechanoreceptors are suggested to be important in the sensory control of dragline release by the spider.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apstein C (1889) Bau und Funktion der Spinndrüsen der Araneida. Arch Naturg 55:29–74

    Google Scholar 

  • Barth FG (1971) Der sensorische Apparat der Spaltsinnesorgane (Cupiennius salei Keys., Araneae). Z Zellforsch Mikrosk Anat 112:212–246

    Article  PubMed  CAS  Google Scholar 

  • Barth FG (1981) Strain detection in the arthropod exoskeleton. In: Laverack MS, Cosens D (eds) Sense organs, chapter 8. Blacky, Glasgow, pp 112–141

    Google Scholar 

  • Barth FG (1985) Slit sensilla and the measurement of cuticular strains. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin, pp 162–188

    Google Scholar 

  • Barth FG, Libera W (1970) Ein Atlas der Spaltsinnesorgane vonCupiennius salei Keys. Chelicerata (Araneae). Z Morph Tiere 68:343–369

    Article  Google Scholar 

  • Barth FG, Blickhan R (1984) Arthropoda: Mechanoreception. In: Bereiter-Hahn J, Matoltsy AG, Sylvia Richards K (eds) Biology of the integument, vol 1: Invertebrates. Springer, Berlin Heidelberg New-York Toyko, pp 554–582

    Google Scholar 

  • Barth FG, Komarek S, Humphrey JAC, Triedler B (1991) Drop and swing dispersal behavior of a tropical wandering spider: experiments and numerical model. J Comp Physiol A 169: 313–322

    Article  Google Scholar 

  • Breidbach O, Marx J (1989) Das Experiment: Neuronen in Blau. Methylenblau als ein Marker für Insektennervenzellen. Biol in unserer Zeit 2:59–61

    Article  Google Scholar 

  • Crome W (1957) Bau und Funktion des Spinnapparates und Analhügels, Ernährungsbiologie und allgemeine Bemerkungen zur Lebensweise vonUroctea durandi. Zool Jb Syst 85:571–606

    Google Scholar 

  • Eberhard WG (1987) How spiders initiate airborne lines. J Arachnol 15:1–9

    Google Scholar 

  • Ehlers M (1939) Untersuchungen über Formen aktiver Lokomotion bei Spinnen. Zool Jb Syst 72:373–499

    Google Scholar 

  • Foelix RF, Schabronath J (1983) The fine structure of scorpion sensory organs. I. Tarsal sensilla. Bull Br arachnol Soc 6:53–56

    Google Scholar 

  • Gnatzy W, Grünert U, Bender M (1987) Campaniform sensilla ofCalliphora vicina (Insecta, Diptera). I. Topography. Zoomorphol 106:312–319

    Google Scholar 

  • Gorb SN, Barth FG (1994) Locomotor behavior during prey-capture of a fishing spiderDolomedes plantarius (Araneae: Araneidae): galloping and stopping. J Arachnol 22:89–93

    Google Scholar 

  • Hess E, Vlimant M (1984) The distal tarsal slit sense organ (DTSSO), a new type of mechanoreceptor on the walking legs of the ixodid tickAmblyomma variegatum Fabricius 1794 (Ixodidae: Metastriata). Acarology 6:253–260

    Google Scholar 

  • Hill DE (1979) Orientation by jumping spiders of the genusPhidippus (Araneae: Salticidae) during the pursuit of prey. Behav Ecol Sociobiol 5:301–322

    Article  Google Scholar 

  • Kovoor J, Peters HM (1988) The spinning apparatus ofPolenecia producta (Araneae, Uloboridae): structure and histochemistry. Zoomorphol 108:47–49

    Article  Google Scholar 

  • Maier L, Root TM, Seyfarth E-A (1987) Heterogeneity of spider leg muscles: histochemistry and electrophysiology of identified fibers in the claw levator. J comp Physiol B 157:285–294

    Article  Google Scholar 

  • Masuko K (1986) Motor innervation and proprioceptors of the mouthparts in the worker honey bee,Apis mellifera. I. Mandibular nerve. J Morphol 188:51–67

    Article  Google Scholar 

  • Mikulska I (1966) The spinning structures on the spinnerets (thelae) ofNephila clavipes L. Zool Pol 16:209–222

    Google Scholar 

  • Mikulska I (1967) The external spinning structures of the thelae of the spiderArgiope aurantia Lucas. Zool Pol 17:358–365

    Google Scholar 

  • Mittelstaedt H (1985) Analytical cybernetics of spider navigation. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin, pp 298–316

    Google Scholar 

  • Palmgren P (1980) Some comments on the anatomy of spiders. Ann Zool Fennici 17:161–173

    Google Scholar 

  • Parry DA, Brown RHJ (1959) The jumping mechanism of salticid spiders. J Exp Biol 36:654–665

    Google Scholar 

  • Peters HM (1955) Über den Spinnapparat vonNephila madagascariensis (Radnetzspinnen, Fam Argiopidae). Z Naturforsch B 10:395–404

    Article  Google Scholar 

  • Peters HM (1993a) Functional organization of the spinning apparatus ofCyrtophora citricola with regard to the evolution of the web (Aranea, Araneidae). Zoomorphol 113:153–163

    Article  Google Scholar 

  • Peters HM (1993b) Über das Problem der Stabilimente in Spinnennetzen. Zool Jb Physiol 97:245–264

    Google Scholar 

  • Peters R (1967) Vergleichende Untersuchungen über Bau und Funktion der Spinnwarzen und Spinnwarzenmuskulatur einiger Araneen. Zool Beitr 13:29–119

    Google Scholar 

  • Reynolds E (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  PubMed  CAS  Google Scholar 

  • Richardson KC, Jarett L, Finke EH (1960) Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol 35:313–325

    PubMed  CAS  Google Scholar 

  • Smith DS (1969) The fine structure of haltere sensilla in the blowfly,Calliphora erythrocephala (Meig), with scanning electron microscopic observations on the haltere surface. Tissue and Cell 1:443–484

    PubMed  CAS  Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastructure Res 26:31–43

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorb, S.N., Barth, F.G. A new mechanosensory organ on the anterior spinnerets of the spiderCupiennius salei (Araneae, Ctenidae). Zoomorphology 116, 7–14 (1996). https://doi.org/10.1007/BF02526925

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02526925

Keywords

Navigation