Skip to main content
Log in

Pragmatic treatment of improper solutions in factor analysis

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Summary

In the application of factor analysis to empirical data, a statistical test almost always indicates more factors than researchers expect. However, if one more factor is tried to be extracted, proper solutions cannot be obtained frequently and several problems arise.

This paper investigates causes of the problems and proposes a pragmatic treatment of improper solutions. Further, some recommendations are made on the practical application of factor analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, J. C. and Gerbing, D. W. (1984). The effect of sampling error on convergence, improper solution, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis,Psychometrika,49, 155–173.

    Article  Google Scholar 

  2. Anderson, T. W. and Rubin, H. (1956). Statistical inference in factor analysis,Proc. Third Berkeley Symp. Math. Statist. Prob.,5, 111–150.

    MathSciNet  MATH  Google Scholar 

  3. Bechtoldt, H. P. (1961). An empirical study of the factor analysis stability hypothesis,Psychometrika,26, 405–432.

    Article  Google Scholar 

  4. Boomsma, A. (1985). Nonconvergence improper solutions, and starting values in LISREL maximum likelihood estimation,Psychometrika,50, 229–242.

    Article  Google Scholar 

  5. Cattell, R. B. (1965). Factor analysis: an introduction to essentials,Biometrics,21, 190–215.

    Article  MathSciNet  Google Scholar 

  6. Driel, O. P. van (1978). On various causes of improper solutions in maximum likelihood factor analysis,Psychometrika,43, 225–243.

    Article  Google Scholar 

  7. Driel, O. P. van, Prins, H. J. and Veltkamp, G. W. (1974). Estimating the parameters of the factor analysis model without the usual constraints of positive definitness,Proceedings of the Symposium on Computational Statistics (COMPSTAT), Vienna, 255–265.

  8. Fukutomi, K. (1973). On the adequacy of factor extraction,TRU Mathematics,9, 119–136.

    MathSciNet  MATH  Google Scholar 

  9. Geweke, J. F. and Singleton, K. J. (1980). Interpreting the likelihood ratio statistics in factor models when sample size is small,J. Amer. Statist. Ass.,75, 133–137.

    Article  Google Scholar 

  10. Green, B. F. (1952). The orthogonal approximation of an oblique structure in factor analysis,Psychometrika,17, 429–440.

    Article  MathSciNet  Google Scholar 

  11. Harman, H. H. (1960).Modern Factor Analysis, University of Chicago Press, Chicago

    MATH  Google Scholar 

  12. Harman, H. H. and Fukuda, Y. (1966). Resolution of the Heywood case in the minres solution,Psychometrika,31, 563–571.

    Article  MathSciNet  Google Scholar 

  13. Jackson, D. N. and Chan, D. W. (1980). Maximum likelihood estimation in common factor analysis: A causionary note,Psychol. Bull.,88, 502–508.

    Article  Google Scholar 

  14. Jennrich, R. I. and Robinson, S. M. (1969). A Newton-Raphson algorithm for maximum likelihood factor analysis,Psychometrika,34, 111–123.

    Article  MathSciNet  Google Scholar 

  15. Jöreskog, K. G. (1967). Some contributions to maximum likelihood factor analysis,Psychometrika,32, 443–482.

    Article  MathSciNet  Google Scholar 

  16. Jöreskog, K. G. (1977). Factor analysis by least-squares and maximum-likelihood methods (eds. Enslein, K., Ralston, A. and Wilf, H. S.).Statistical Methods for Digital Computers, Wiley-Interscience, New York, 125–153.

    Google Scholar 

  17. Koopman, R. F. (1978). On Bayesian estimation in unrestricted factor analysis,Psychometrika,43, 109–110.

    Article  MathSciNet  Google Scholar 

  18. Lawley, D. N. and Maxwell, A. E. (1971).Factor Analysis as a Statistical Method, 2nd ed., Butterworths, London.

    MATH  Google Scholar 

  19. Martin, J. K. and McDonald, R. P. (1975). Bayesian estimation in unrestricted factor analysis: a treatment for Heywood cases,Psychometrika,40, 505–517.

    Article  Google Scholar 

  20. Mattsson, A., Olsson, U. and Rosén, M. (1966). The maximum likelihood method in factor analysis with special consideration to the problem of improper solutions,Research Report, Institute of Statistics, University of Uppsala, Sweden.

    Google Scholar 

  21. Maxwell A. E. (1961). Recent trends in factor analysis,J. R. Statist. Soc., A124, 49–59.

    MathSciNet  Google Scholar 

  22. Maxwell, A. E. (1972). Factor analysis: Thomson's sampling theory recalled,Brit. J. Math. Statist. Psychol.,25, 1–21.

    Article  Google Scholar 

  23. Rao, C. R. (1955). Estimation and tests of significance in factor analysis,Psychometrika,20, 93–111.

    Article  MathSciNet  Google Scholar 

  24. Rao, C. R. (1965).Linear Statistical Inference and Its Application., Wiley, New York.

    Google Scholar 

  25. Rindskopf, D. (1984). Structural equation models: Empirical identification, Heywood cases, and related problems,Sociol. Meth. Res.,13, 109–119.

    Article  Google Scholar 

  26. Shiba, S. (1972).Factor Analysis (in Japanese), University of Tokyo Press, Tokyo.

    Google Scholar 

  27. Tucker, L. R. and Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis,Psychometrika,38, 1–10.

    Article  Google Scholar 

  28. Tumura, Y. and Fukutomi, K. (1968). On the identification in factor analysis,Rep. Statist. Appl. Res.,15, 98–103.

    MathSciNet  MATH  Google Scholar 

  29. Tumura, Y. and Sato, M. (1980). On the identification in factor analysis,TRU Mathematics,16(2), 121–131.

    MathSciNet  MATH  Google Scholar 

  30. Tumura, Y. and Sato, M. (1981). On the convergence of iterative procedures in factor analysis,TRU Mathematics,17, 159–168.

    MathSciNet  MATH  Google Scholar 

  31. Tumura, Y. and Sato, M. (1981). On the convergence of iterative procedures in factor analysis (II),TRU Mathematics,17, 255–271.

    MathSciNet  MATH  Google Scholar 

  32. Tumura, Y., Fukutomi, K. and Asoo, Y. (1968). On the unique convergence of iterative procedures in factor analysis,TRU Mathematics,4, 52–59.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by Grand-in-Aid for Scientific Research of the Ministry of Education, Science and Culture under Contract Number 61730015 and 61530017.

About this article

Cite this article

Sato, M. Pragmatic treatment of improper solutions in factor analysis. Ann Inst Stat Math 39, 443–455 (1987). https://doi.org/10.1007/BF02491481

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02491481

Key words and phrases

Navigation