Skip to main content
Log in

On the consistency and finite-sample properties of nonparametric kernel time series regression, autoregression and density estimators

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Summary

Kernel estimators of conditional expectations and joint probability densities are studied in the context of a vector-valued stationary time series. Weak consistency is established under minimal moment conditions and under a hierarchy of weak dependence and bandwidth conditions. Prompted by these conditions, some finite-sample theory explores the effect of serial dependence on variability of estimators, and its implications for choice of bandwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad, I. A. (1979). Strong consistency of density estimators by orthogonal series methods for dependent variables with applications,Ann. Inst. Statist. Math.,31, 279–288.

    Article  MathSciNet  Google Scholar 

  2. Ahmad, I. A. (1981). A note on nonparametric density estimation for dependent variables using a delta sequence,Ann. Inst. Statist. Math.,33, 247–254.

    Article  MathSciNet  Google Scholar 

  3. Ahmad, I. A. (1982). Integrated mean square properties of density estimation by orthogonal series methods for dependent variables,Ann. Inst. Statist. Math.,34, 339–350.

    Article  MathSciNet  Google Scholar 

  4. Bosqu, D. (1983). Sur la prédiction non paramétrique de variables aléatoires et de mesures aléatoires,Zeit. Wahrscheinlichkeitsth.,64, 541–553.

    Article  Google Scholar 

  5. Cacoullos, T. (1966). Estimation of a multivariate density,Ann. Inst. Statist. Math.,18, 179–189.

    Article  MathSciNet  Google Scholar 

  6. Chanda, K. C. (1983). Density estimation for linear processes,Ann. Inst. Statist. Math.,35, 439–446.

    Article  MathSciNet  Google Scholar 

  7. Collomb, G. (1982). Propriétés de convergence presque complète du predictor à noyau, Preprint.

  8. Georgiev, A. (1984). Nonparametric system identification by kernel method,IEEE Trans. Automatic Control,29, 356–359.

    Article  Google Scholar 

  9. Greblicki, W., Rutkowska, D. and Rutkowski, L. (1983). An orthogonal series estimate of time-varying regression,Ann. Inst. Statist. Math.,35, 215–228.

    Article  MathSciNet  Google Scholar 

  10. Gyorfi, L. (1981). Strong consistent density estimate from ergodic sample,J. Multivariate Anal.,11, 81–84.

    Article  MathSciNet  Google Scholar 

  11. Hannan, E. J. (1970).Multiple Time Series, John Wiley and Sons, New York.

    Book  Google Scholar 

  12. Hinich, M. J. (1979). Estimating the lag structure of a nonlinear time series model,J. Amer. Statist. Ass.,74, 449–456.

    MathSciNet  MATH  Google Scholar 

  13. Ibragimov, I. A. (1970). On the spectrum of stationary Gaussian processes satisfying the strong mixing condition. II Sufficient conditions. Mixing rate,Theory Prob. Appl.,15, 23–36.

    Article  Google Scholar 

  14. Masry, E. (1983). Probability density estimation from sampled data,IEEE Trans. Inf. Theory,29, 696–709.

    Article  MathSciNet  Google Scholar 

  15. Pham, T. D. (1981). Nonparametric estimation of the drift coefficient in the diffusion equation,Math. Operationsforsch. Statist., ser. Statist.,12, 61–73.

    MathSciNet  MATH  Google Scholar 

  16. Pham, T. D. and Tran, L. T. (1980). The strong mixing properties of the autoregressive moving average time series model,Seminaire de Statistique, Grenoble, 59–76.

  17. Phillip, W. (1969). The central limit problem for mixing sequences of random variables,Zeit. Wahrscheinlichkeitsth.,12, 155–171.

    Article  MathSciNet  Google Scholar 

  18. Prakasa Rao, B. L. S. (1978). Density estimation for Markov processes using delta-sequences,Ann. Inst. Statis. Math.,30, 321–328.

    Article  MathSciNet  Google Scholar 

  19. Robinson, P. M. (1983). Nonparametric estimators for time series,J. Time Series Anal.,4, 185–207.

    Article  MathSciNet  Google Scholar 

  20. Roussas, G. (1967). Nonparametric estimation in Markov processes,Ann. Inst. Statist. Math.,21, 73–87.

    Article  MathSciNet  Google Scholar 

  21. Roussas, G. (1969). Nonparametric estimators of the transition distribution function of a Markov process,Ann. Math. Statist.,40, 1386–1400.

    Article  MathSciNet  Google Scholar 

  22. Rudin, W. (1976).Principles of Mathematical Analysis, McGraw-Hill, New York.

    MATH  Google Scholar 

  23. Takahata, H. (1977). On recursive density estimators for a class of stationary processes,Bull. Tokyo Gakugei Univ., Ser. IV,29, 10–18.

    MathSciNet  MATH  Google Scholar 

  24. Takahata, H. (1980). Almost sure convergence of density estimators for weakly dependent stationary processes,Bull. Tokyo Gakugei Univ., Ser. IV,32, 11–32.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by the ESRC.

About this article

Cite this article

Robinson, P.M. On the consistency and finite-sample properties of nonparametric kernel time series regression, autoregression and density estimators. Ann Inst Stat Math 38, 539–549 (1986). https://doi.org/10.1007/BF02482541

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02482541

Key words and phrases

Navigation