Skip to main content
Log in

Receptors and functional linkage in membrane permeability: A quantum mechanical model

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

During functional linkage, ligand receptors are coupled to other receptors and to the cell's metabolic-transport apparatus. The linkage guides the cellular processing of matter, energy and information. Previous conceptions of functional linkage have used the ideas of classical physics appropriate to macroscopic objects. This study presents an initial quantum mechanical model of functional linkage in the case of ligands moving through lipid bilayers and hydrophilic transmembrane channels (‘pores’) of molecular dimensions. On the basis of permeability data, energy surfaces consisting of piecewise-constant potential regions are used to model the lipid bilayers and transmembrane channels.

The centre-of-mass wavefunction for a ligand on such energy surfaces is analysed and the permeability coefficients calculated from the wavefunction's transmission characteristics. It is found that quasi-bound states in the several ligand-binding regions of a bilayer or pore system can functionally link to facilitate the passage of the molecule across the permeability barrier. Appearance of the linkage is a sensitive function of the ligand's energy. If the centre-of-mass energies are distributed as in a thermalized fluid, the flux via the quantum functional linkage can equal or exceed that of a classical flux for proton transport through rigid pores in which the intrasite barriers are relatively high (0.25–1 eV) and narrow (0.1–1 Å). The functional linkage plays a less important role in bilayer (rather than pore) energy surfaces and at higher molecular weights. If the ligand-receptor interaction is accompanied by energy transfer to or from ligands, the flux via the quantum functional linkage can equal or exceed the classically expected flux at all relevant ligand molecular weights. These findings are discussed in relation to earlier work and the limitations of the model emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Azbel, M. Ya. and P. Soven. 1983. “Transmission Resonances and the Localization Length in One-Dimensional Disordered Systems.”Phys. Rev. B27, 831–835.

    Article  Google Scholar 

  • Burgen, A. S. V. 1957. “The Physiological Ultrastructure of Cell Membranes.”Can. J. Biochem. Physiol. 35, 568–578.

    Google Scholar 

  • Dammert, O. 1983. “Transmission Through a System of Potential Barriers. I. Transmission Coefficient.”J. math. Phys.,24, 2163–2175.

    Article  MathSciNet  Google Scholar 

  • Davson, H. and J. F. Danielli. 1950.The Permeability of Natural Membranes. Cambridge: Cambridge University Press.

    Google Scholar 

  • Eisenberg, D. and W. Kauzmann. 1969.The Structure and Properties of Water. Oxford: Clarendon Press.

    Google Scholar 

  • Fischer, W. and J. Brickmann. 1983. “Ion-specific Diffusion Rates Through Transmembrane Protein Channels. A Molecular Dynamics Study.”Biophys. Chem. 18, 323–337.

    Article  Google Scholar 

  • —— and P. Läuger. 1981. “Molecular Dynamics Study of Ion Transport in Transmembrane Potential Channels.”Biophys. Chem. 13, 105–116.

    Article  Google Scholar 

  • Frehland, E. and W. Stephan. 1983. “Rate Theory Models for Ion Transport Through Rigid Pores. I. Time-dependent Analysis in Case of Vanishing Interactions.”J. theor. Biol. 103, 77–97.

    Article  Google Scholar 

  • Ghelis, C. and J. Yon. 1982.Protein Folding. New York: Academic Press.

    Google Scholar 

  • Glaeser, R. M. and B. K. Jap. 1984. “The ‘Born Energy’ Problem in Bacteriorhodopsin.”Biophys. J. 45, 95–97.

    Google Scholar 

  • Griffith, O. H., D. J. Dehlinger and S. P. Van. 1974. “Shape of the Hydrophobic Barrier of Phospholipid Bilayers. Evidence for Water Penetration in Biological Membrane.”J. Membrane Biol. 15, 159–192.

    Article  Google Scholar 

  • Hodgkin, A. L. and A. F. Huxley. 1952. “A Quantitative Description of Membrane Current and its Application to Conduction and Excitation in Nerve.”J. Physiol. 117, 500–544.

    Google Scholar 

  • Jacobs, M. H. 1967.Diffusion Processes. New York: Springer-Verlag.

    Google Scholar 

  • Jain, M. K. 1972.The Bimolecular Lipid Membrane: A System. Toronto: Van Nostrand Reinhold.

    Google Scholar 

  • Jordan, P. C. 1984. “Electrostatic Models of the Gramicidin and the Delayed Rectifier Potassium Channel.”Biophys. J. 45, 100–102.

    Article  Google Scholar 

  • Klingenberg, M. 1981. “Membrane Protein Oligomeric Structure and Transport Function.”Nature 290, 449–454.

    Article  Google Scholar 

  • Kuharski, R. A. and P. J. Rossky. 1984. “Quantum Mechanical Contributions to the Structure of Liquid Water.”Chem. Phys. Lett. 103, 357–362.

    Article  Google Scholar 

  • Läuger, P. 1970. “Ion Transport Across Lipid Bilayer Membranes.” InPhysical Principles of Biological Membranes, F. Snell, J. Walken, G. Iverson and J. Lam (Eds), pp. 227–238. New York: Gordon & Breach.

    Google Scholar 

  • — and B. Neumcke. 1973. “Theoretical Analysis of Ion Conductance in Lipid Bilayer Membranes.” InMembranes: A Series of Advances, Vol. 2, G. Eisenman (Ed.), pp. 1–59, New York: Marcel Dekker.

    Google Scholar 

  • Levitt, D. G. 1978a. “Electrostatic Calculations for an Ion Channel. I. Energy and Potential Profiles and Interactions Between Ions.”Biophys. J. 22, 209–219.

    Google Scholar 

  • — 1978b. “Electrostatic Calculations for an Ion Channel. II. Kinetic Behavior of the Gramicidin A Channel.”Biophys. J. 22, 221–248.

    Google Scholar 

  • Levitt, M. and A. Warshel 1975. “Computer Simulation of Protein Folding.”Nature 253, 694–698.

    Article  Google Scholar 

  • Lundstrom, I. and C. Nylander. 1983. “Electrostatics and Gating of Excitable Membranes.”Int. J. Quantum Chem. 23, 1269–1282.

    Article  Google Scholar 

  • Mackay, D. H., P. H. Berens, K. R. Wilson and A. T. Hagler. 1984. “Structure and Dynamics of Ion Transport Through Gramicidin A.”Biophys. J. 46, 229–248.

    Google Scholar 

  • Markowski, L. and J. Li 1984. “X-ray Diffraction and Electron Microscope Studies of the Molecular Structure of Biological Membranes.” InBiomembrane Structure and Function, Vol. 4, D. Chapman (Ed.), pp. 43–166. Deerfield Beach, FL: Macmillan.

    Google Scholar 

  • Marsh, D. 1983. “Biomembranes.” InSupramolecular Structure and Function, G. Pifat and J. N. Herak (Eds), pp. 127–178. New York: Plenum.

    Google Scholar 

  • McCammon, J. A. 1984. “Protein dynamics.”Rep. Prog. Phys. 47, 1–46.

    Article  Google Scholar 

  • —, B. R. Gelin and M. Karplus. 1977. “Dynamics of Folded Proteins.”Nature 267, 585–590.

    Article  Google Scholar 

  • Naftalin, R. J. 1970. “A Model for Sugar Transport Across Red Cell Membranes Without Carriers.”Biochim. biophys. Acta 211, 65–78.

    Article  Google Scholar 

  • Parsegian, A. 1969. “Energy of an Ion Crossing a Low Dielectric Membrane: Solutions to Four Relevant Electrostatic Problems.”Nature 221, 844–846.

    Article  Google Scholar 

  • — and D. C. Rau. 1984. “Water Near Intracellular Surfaces.”J. Cell Biol. 99, 196s-200s.

    Article  Google Scholar 

  • Pauling, L. 1960.The Nature of the Chemical Bond, 3rd edn. Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Reif, F. 1965.Fundamentals of Statistical and Thermal Physics. New York: McGraw-Hill.

    Google Scholar 

  • Rorres, C. 1974. “Transmission Coefficients and Eigenvalues of a Finite One-dimensional Crystal.”SIAM J. appl. Math. 27, 303–321.

    Article  MATH  MathSciNet  Google Scholar 

  • Schmitt, F. O., D. M. Schneider and D. M. Crothers. 1975.Functional Linkage In Biomolecular Systems. New York: Raven Press.

    Google Scholar 

  • Schoch, P., D. F. Sargent and R. Schwyzer. 1979. “Capacitance and Conductance as Tools for the Measurement of Asymmetric Surface Potentials and Energy Barriers of Lipid Bilayer Membranes.”J. Membrane Biol. 46, 71–89.

    Article  Google Scholar 

  • Silverman, M. 1977. “Specificity of Membrane Transport.” InReceptors and Recognition, Series A, Vol. 3, P. Cuatrecasas and M. F. Greaves (Eds), pp. 133–166. London: Chapman & Hall.

    Google Scholar 

  • Solomon, A. K. 1968. “Characterization of Biological Membranes by Equivalent Pores.”J. gen. Physiol. 51, 335s-364s.

    Google Scholar 

  • Wei, L. Y. and B. Y. Woo. 1973. “Ion Transport Through Thin Lipid Films.”J. biol. Phys. 1, 50–68.

    Article  Google Scholar 

  • — and —. 1974. “Semiconductor Theory of Ion Transport in Thin Lipid Films. I. Potential and Field Distributions.”Bull. math. Biol. 36, 229–246.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lumsden, C.J. Receptors and functional linkage in membrane permeability: A quantum mechanical model. Bltn Mathcal Biology 48, 545–567 (1986). https://doi.org/10.1007/BF02462323

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02462323

Keywords

Navigation