Skip to main content
Log in

The mathematical modeling of entrained biological oscillators

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper perturbation methods are used for the mathematical analysis of coupled relaxation oscillators. This study covers entrainment by an external periodic stimulus as well as mutual entrainment of coupled oscillators with different limit cycles. The oscillators are of a type one meets in the modeling of biological oscillators by chemical reactions and electronic circuits. Special attention is given to entrainment different from 1∶1. The results relate to phenomena occurring in physiological experiments, such as the periodic stimulation of neural and cardiac cells, and in the non-regular functioning of organs and organisms, such as the AV-block in the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Allen, T. 1983. “On the Arithmetic of Phase Locking: Coupled Neurons as a Lattice on R2.”Physica 6D, 305–320.

    Google Scholar 

  • Auchmuty, J. F. G. and G. Nicolis, 1976. “Bifurcation Analysis of Reaction Diffusion Equations—III. Chemical Oscillations.”Bull. math. Biol. 38, 325–350.

    Article  MATH  MathSciNet  Google Scholar 

  • Cohen, A. H., P. J. Holmes and R. H. Rand. 1982. “The Nature of the Coupling between Segmental Oscillators of the Lamprey Spinal Generator for Locomotion: a Mathematical Model.”J. math. Biol. 13, 345–369.

    Article  MATH  MathSciNet  Google Scholar 

  • Ermentrout, G. B. 1981. “n:m Phase-locking of Weakly Coupled Oscillators.”J. math. Biol. 12, 327–342.

    Article  MATH  MathSciNet  Google Scholar 

  • — and N. Kopell. 1983. “Frequency Plateaus in a Chain of Weakly Coupled Oscillators I and II.” Boston, MA: Department of Mathematics, Northeastern University, preprints.

    Google Scholar 

  • Gear Luce, C. 1971.Biological Rhythms in Human and Animal Physiology. New York: Dover.

    Google Scholar 

  • Glass, L. and M. C. Mackey. 1979. “A Simple Model for Phase Locking of Biological Oscillators.”J. math. Biol. 7, 339–352.

    Article  MATH  MathSciNet  Google Scholar 

  • — and R. Perez. 1982. “Fine Structure of Phase Locking.”Phys. Rev. Lett. 48, 1772–1775.

    Article  MathSciNet  Google Scholar 

  • Gollub, J. P., T. O. Brunner and B. C. Danly. 1978. “Periodicity and Chaos in Coupled Nonlinear Oscillators.”Science 200, 48–50.

    Google Scholar 

  • Grasman, J. and M. J. W. Jansen. 1979. “Mutually Synchronized Relaxation Oscillators as Prototypes of Oscillating Systems in Biology.”J. math. Biol. 7, 171–197.

    MATH  MathSciNet  Google Scholar 

  • Guckenheimer, J. 1980. “Symbolic Dynamics and Relaxation Oscillations.”Physica 1D, 227–235.

    MathSciNet  Google Scholar 

  • Guevara, M. R., L. Glass and A. Shrier. 1981. “Phase Locking, Period-doubling Bifurcations and Irregular Dynamics in Periodically Stimulated Cardiac Cells.”Science 214, 1350–1353.

    Google Scholar 

  • Holden, A. V. 1976. “The Response of Excitable Membrane Models to a Cyclic Input.”Biol. Cybernet. 21, 1–7.

    Article  Google Scholar 

  • Hoppensteadt, F. C. 1981. “Electric Models of Neurons.”Lect. appl. Math. 19, 327–344.

    MATH  MathSciNet  Google Scholar 

  • Keener, J. P. 1981. “On Cardiac Arrythmias: AV Conduction Block.”J. math. Biol. 12, 215–225.

    MATH  MathSciNet  Google Scholar 

  • Kreifeldt, J. 1970. “Ensemble Entrainment of Self-sustaining Oscillators: a Possible Application to Neural Signals.”Math. Biosci. 8, 425–436.

    Article  Google Scholar 

  • Kuramoto, Y. 1975. “Self Entrainment of a Population of Coupled Nonlinear Oscillators.” InLecture Notes in Physics, No. 39.International Symposium on Mathematical Problems in Theoretical Physics, Ed. H. Araki, pp. 420–422. Berlin: Springer.

    Google Scholar 

  • Lopes da Silva, F. H., A. van Rotterdam, P. Barts, E. van Heusden and W. Burr. 1976. “Models of Neuronal Populations: the Basic Mechanisms of Rhythmicity.” InProgress in Brain Research, Ed. D. Swaab and M. E. Corner, Vol. 45, pp. 281–308. Amsterdam: Biomedical Press.

    Google Scholar 

  • Mishenko, E. F. and N. Kh. Rosov. 1980.Differential Equations with Small Parameters and Relaxation Oscillations. New York: Plenum Press.

    Google Scholar 

  • Neu, J. C. 1980. “Large Populations of Coupled Chemical Oscillators.”SIAM J. appl. Math. 38, 305–316.

    Article  MATH  MathSciNet  Google Scholar 

  • Petrillo, G. A., L. Glass and T. Trippenbach. 1983. “Phase Locking of the Respiratory Rhythm in Cats to a Mechanical Ventilator.”Can. J. Physiol. Pharmacol. 61, 599–607.

    Google Scholar 

  • Sarna, S. K., E. E. Daniel and Y. J. Kingma. 1972. “Simulation of the Electric-control Activity of the Stomach by an Array of Oscillators.”Digest. Dis. 17, 299–310.

    Article  Google Scholar 

  • Stoker, J. J. 1950.Nonlinear Vibrations. New York: Interscience.

    MATH  Google Scholar 

  • Torre, V. 1975. “Synchronization on Nonlinear Biochemical Oscillators Coupled by Diffusion.”Biol. Cybernet. 17, 137–144.

    Article  MATH  MathSciNet  Google Scholar 

  • Tyson, J. J. 1976.Lecture Notes in Biomathematics, Vol. 10. The Belousov-Zhabotinskii Reaction. Berlin: Springer.

    Google Scholar 

  • Van der Pol, B. and J. Van der Mark. 1928. “The Heart Beat Considered as a Relaxation Oscillation and an Electrical model of the Heart.”Phil. Mag. 4, 763–773.

    Google Scholar 

  • Van Meerwijk, W. P. M., G. de Bruin, A. C. G. van Ginneken, J. van Hartevelt, H. J. Jongsma, S. S. Scott and D. L. Ypey. 1983. “Phase Resetting Properties of Cardiac Pacemaker Cells.” Amsterdam: Department of Physiology, University of Amsterdam, preprint.

    Google Scholar 

  • Wever, R. A. 1979.The Circadian System of Man. New York: Springer.

    Google Scholar 

  • Wiener, N. 1958.Nonlinear Problems in Random Theory. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  • Winfree, A. T. 1980. “The Geometry of Biological Time.”Biomathematics Vol. 8. Berlin, Springer.

    MATH  Google Scholar 

  • —. 1983. “Sudden Cardiac Death: a Problem in Topology.”Sci. Am. 248, 118–131.

    Article  Google Scholar 

  • Yoshizawa, S., H. Osada and J. Nagumo. 1982. “Pulse Sequences Generated by a Degenerate Analog Neuron Model.”Biol. Cybernet. 45, 23–34.

    Article  MATH  MathSciNet  Google Scholar 

  • Ypey, D. L., W. P. M. van Meerdijk, E. Ince and G. Groos. 1980. “Mutual Entrainment of Two Pacemaker Cells. A Study with an Electronic Parallel Conductance Model.”J. theor. Biol. 86, 731–755.

    Article  Google Scholar 

  • ——, and G. de Bruin. 1982. “Suppression of Pacemaker Activity by Rapid Repetitive Phase Delay.”Biol. Cybernet. 45, 187–194.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grasman, J. The mathematical modeling of entrained biological oscillators. Bltn Mathcal Biology 46, 407–422 (1984). https://doi.org/10.1007/BF02462016

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02462016

Keywords

Navigation