Skip to main content
Log in

Effects of a number of short peptides isolated from the brain of the hibernating ground squirrel on the eeg and behavior in rats

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Intracerebroventricular administration of the peptides kyotorphin (Tyr-Arg), neokyotorphin (Thr-Ser-Lys-Tyr-Arg), and Asp-Tyr at doses of 4 and 8 μg altered the behavior of rats in a manner similar to that seen after similar administration of brain fractions from hibernating ground squirrels (Citellus undulatus), which contained these peptides: there were increases in orientational reactions, increases in the frequency of stereotypical scratching movements, grooming, yawning, hiccuping, and sneezing. Animals became drowsy after 15–20 min. Peptides and brain fractions also had similar effects on the EEG of rats. Brain fractions reduced theta and alpha rhythms and enhanced delta and beta frequencies. Increases in delta waves were seen with all peptides (a 4-μg dose of kyotorphin produced alternating increases and reductions in the delta rhythm). Inhibition of theta and alpha rhythms after administration of Asp-Tyr and kyotorphin was more transient than after brain fractions. Increases in beta frequencies were seen only after administration of 8 μg of Asp-Tyr, the smaller dose not producing this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. Alekseev, Features of the Function and Regulation of Potential-Dependent Ca2+ Channels by Endogenous Peptides in Cardiocytes in Hibernating Animals [in Russian], Author's Abstract of Thesis for Doctorate in Physical and Mathematical Sciences, ITÉB AN, Russian Academy of Sciences (1994).

  2. A. E. Valeev, “Receptors of γ-aminobutyric acid in the central nervous system,” Neirofiziologiya,18, 273 (1986).

    CAS  Google Scholar 

  3. O. S. Vinogradova, The Hippocampus and Memory [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  4. V. V. Vorob'ev, A. A. Gal'chenko, and O. N. Deryugina, “The electrical activity of the visual cortex in conditions of changing levels of monoamines in animals brains,” Zh. Vyssh. Nerv. Deyat.,40, No. 1, 119 (1990).

    Google Scholar 

  5. N. N. Demin, T. Kh. Shortranov, and É. Z. Émirbekov, The Neurochemistry of Hibernation in Mammals [in Russian], Nauka, Leningrad (1988).

    Google Scholar 

  6. T. E. Emel'yanova, A. B. Usenko, V. V. Ushakov, et al. “The effects of kyotorphin and neokyotorphin on thermoregulation in rats at different environmental temperatures,” in: Ecological and Physical Characteristics of Natural Hypometabolic States [in Russian], ONTI NTsBI, Russian Academy of Sciences (1992), p. 132.

  7. R. Kh. Ziganshin, V. I. Sviryaev, B. V. Vas'kovskii et al., “Biologically active peptides isolated from the brains of hibernating ground squirrels,” Bioorg. Khim.,20, No. 8-9, 899 (1994).

    PubMed  CAS  Google Scholar 

  8. D. A. Ignat'ev, V. I. Zagnoiko, G. S. Sukhova, et al., “On biologically active substances in the tissues of hibernating animals,” Zh. Obshch. Biol.,56, No. 5, 450 (1995).

    PubMed  Google Scholar 

  9. Yu. M. Kokoz, O. V. Nakipova, V. I. Sviryaev, et al., “The actions of substances present in brain fractions and the small intestine of hibernating ground squirrels (Citellus undulatus) on the excitability of myocardial fibers,” in: Mechanisms of Hibernation [in Russian], ONTI NTsBI, Academy of Sciences of the USSR (1987), p. 146.

  10. Yu. F. Pastukhov, Sleep and Torpor [in Russian], VINITI. Human and Animal Physiology, Vol. 31, Moscow (1986), p. 59.

  11. K. S. Raevskii and V. P. Giorgiev, Mediator Amino Acids [in Russian], Meditsina, Moscow (1986).

    Google Scholar 

  12. H. Amano, Y. Morimoto, S. Kaneko, and H. Takagi, “Opioid activity of enkephalin analogues containing the kyotorphin-related structure in the N-terminus,” Neuropharmacol.,23, No. 4, 395 (1984).

    Article  CAS  Google Scholar 

  13. A. L. Beckman, “Functional aspects of brain opioid peptide system in hibernation,” in: Living in the Cold, A. C. Heller, et al. (eds.), Elsevier, New York (1986), p. 225.

    Google Scholar 

  14. A. L. Beckman and T. L. Stanton, “Properties of the CNS during the state of hibernation,” in: The Neural Basis of Behavior, A. N. Beckman (ed.), Spectrum, New York (1982), p. 19.

    Google Scholar 

  15. R. I. Herning, R. T. Jones, W. D. Hooker, et al., “Cocaine increases EEG beta: a replication and extension of Hans Berger's historic experiments,” EEG Clin. Neurophysiol.,60, No. 6, 470 (1985).

    Article  CAS  Google Scholar 

  16. D. A. Ignat'ev, V. V. Vorob'ev, A. V. Yarkov, and V. I. Sviryaev, “The ‘hibernation trigger’ alters behaviour and biopotentials of rat brain,” in: Signal Molecules and Behaviour, W. Winlow, et al., (eds.), Manchester University Press, Manchester (1991), p. 213.

    Google Scholar 

  17. P. K. Janicki and A. W. Lipkowski, “Kyotorphin and D-kyotorphin stimulate met-enkephalin release from rat striatumin vitro,” Neurosci. Lett.,43, 73 (1983).

    Article  PubMed  CAS  Google Scholar 

  18. P. K. Janicki and A. W. Lipkowski, “Effects of new kyotorphin analogs on ECoG pattern in the rat,” Activ. Nerv. Sup. (Praha),28, No. 2, 146 (1986).

    CAS  Google Scholar 

  19. W. Kostowsky, “Interactions between serotonergic and catecholaminergic systems in the brain,” Pol. J. Pharmacol. Pharmacodynam.27, Suppl. 14 (1975).

    Google Scholar 

  20. C. P. Lyman, J. S. Willis, A. Malan, and L. G. H. Wang, Hibernation and Torpor in Mammals and Birds, Academic Press, London (1982).

    Google Scholar 

  21. P. Oeltgen, J. Walsh, S. Hamann, et al., “Hibernation trigger opioid-like inhibitory action on brain function of the monkey,” Pharm. Biochem. Behav.,17, No. 6, 1271 (1982).

    Article  CAS  Google Scholar 

  22. Z. J. Pellegrino, A. S. Pellegrino, and A. J. Cushman, A Stereotaxic Atlas of the Rat Brain, Plenum Press, New York (1979).

    Google Scholar 

  23. M. Saton, S. Kawajiri, M. Yamomoto, et al., “Effects of tyrosylarginine (kyotorphin), a nev, opioid dipeptide, on single neurons in the spinal dorsal horn of rabbits and the nucleus reticularis paragigantocellularis of rat,” Neurosci. Lett.,16, 319 (1980).

    Article  Google Scholar 

  24. B. Stigsby, W. D. Obrist, and J. A. Sulg, “Automatic acquisition and period-amplitude analysis of the electroencephalogram,” Comput. Prog. Biomed.,3, 93 (1973).

    Article  CAS  Google Scholar 

  25. H. Swan and C. L. Schatte, “Antimetabolic extract from the brain of hibernating ground squirrelCitellus tridecemilinesatus,” Science,195, 84 (1977).

    PubMed  CAS  Google Scholar 

  26. H. Takagi, H. Shiomi, K. Fukui, et al., “Isolation of a novel analgesic pentapeptide, neo-kiotorphin, from bovine brain,” Life Sci.,31, 1733 (1982).

    Article  PubMed  CAS  Google Scholar 

  27. H. Takagi, H. Shiomi, H. Ueda, and H. Amano, “Morphine-like analgesia by a new dipeptide, L-tyrosyl-L-arginine (kyotorphin) and its analogue,” Eur. J. Pharmacol.,55, 109 (1979).

    Article  PubMed  CAS  Google Scholar 

  28. M. Yamamoto, K. Kawamuki, V. Satoh, and H. Takagi, “Excitatory action of microelectrophoretically applied kyotorphin (Tyr-Arg) on unitary activity in the rat cerebral cortex” in: Advances in Endogenous Opioids, Proceedings of the International Narcotic Research Conference, Kyoto, Japan, July 26–30 (1981), p. 220.

Download references

Authors

Additional information

Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow. Translated from Zhurnal Vysshei Nervnoi Deyatel'nosti, Vol. 46, No. 6, pp. 1049–1058, November–December, 1996.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ignat'ev, D.A., Vorob'ev, V.V. & Ziganshin, R.K. Effects of a number of short peptides isolated from the brain of the hibernating ground squirrel on the eeg and behavior in rats. Neurosci Behav Physiol 28, 158–166 (1998). https://doi.org/10.1007/BF02461962

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02461962

Keywords

Navigation