Skip to main content
Log in

Mathematical analysis of a model for a plant-herbivore system

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The apple twig borer (Amphicerus bicaudatus) is an insect pest of the grape vine, causing considerable damage to the grape vine in early spring. A simple difference equation model is formulated and analysed for this plant-herbivore system based on two control strategies, cane removal and pesticide application. The system has two equilibria, one where the pest is present and one where the pest is absent. Regions are found in parameter space for global stability of the equilibria and in the absence of global stability it is shown that there exist periodic or quasiperiodic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Allen, L. J. S. 1989. A density-dependent Leslie matrix model.Math. Biosci. 95, 179–187.

    Article  MATH  MathSciNet  Google Scholar 

  • Allen, L. J. S., M. J. Strauss, H. G. Thorvilson and W. N. Lipe. 1991. A preliminary mathematical model of the apple twig borer (Coleoptera: Bostrichidae) and grapes on the Texas High Plains.Ecol. Modelling 58, 369–382.

    Article  Google Scholar 

  • Arthur, M. 1991. Development and mathematical analysis of a model for the grape vine and apple twig borer system. MA. Report, Texas Tech University, Lubbock, Texas.

    Google Scholar 

  • Beddington, J. R., C. A. Free and J. H. Lawton. 1975. Dynamic complexity in predator-prey models framed in difference equations.Nature 255, 58–60.

    Article  Google Scholar 

  • Beiriger, R. 1988. The bionomics ofAmphicerus bicaudatus (Say), the apple twig borer, on the Texas High Plains. MSc Thesis, Texas Tech University, Lubbock, Texas.

    Google Scholar 

  • Beiriger, R., H. Thorvilson, W. Lipe and D. Rummel. 1988. The life history of the apple twig borer.Proc. Texas Grape Growers Ass.12, 101–106.

    Google Scholar 

  • Beiriger, R., H. Thorvilson, W. Lipe and D. Rummel. 1989. Determination of adult apple twig borer sex based on a comparison of internal and external morphology.Southwest. Entomol.14, 199–203.

    Google Scholar 

  • Beiriger, R., H. Thorvilson, W. Lipe and D. Rummel. 1992. Life history of the apple twig borer in grape on the High Plains of Texas.Am. J. Enol. Viticult., in press.

  • Edelstein-Keshet, L. 1986. Mathematical theory for plant-herbivore systems.J. math. Biol. 24, 25–58.

    MATH  MathSciNet  Google Scholar 

  • Edelstein-Keshet, L. 1988.Mathematical Models in Biology. New York: Random House.

    MATH  Google Scholar 

  • Freedman, H. I. and J. W.-H. So. 1987. Persistence in discrete models of a population which may be subjected to harvesting.Nat. Resour. Modelling 2, 135–145.

    MATH  MathSciNet  Google Scholar 

  • Freedman, H. I. and J. W.-H. So. 1989. Persistence in discrete semidynamical systems.SIAM J. math. Anal. 20, 930–938.

    Article  MATH  MathSciNet  Google Scholar 

  • Freedman, H. I. and P. Waltman. 1985. Persistence in a model with three competitive populations.Math. Biosci. 73, 89–101.

    Article  MATH  MathSciNet  Google Scholar 

  • Gutierrez, A. P., D. W. Williams and H. Kido. 1985. A model of grape growth and development: the mathematical structure and biological considerations.Crop Sci. 25, 721–728.

    Article  Google Scholar 

  • Hassell, M. P. 1978.The Dynamics of Arthropod Predator-Prey Systems. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Hsieh, Y.-H. 1988. The phenomenon of unstable oscillation in population models.Math. comput. Modelling 10, 429–435.

    Article  MATH  MathSciNet  Google Scholar 

  • May, R. M. 1975. Biological populations obeying difference equations: Stable points, stable cycles, and chaos.J. theor. Biol. 51, 511–524.

    Article  Google Scholar 

  • May, R. M. 1976. Simple mathematical models with very complicated dynamics.Nature 261, 459–467.

    Article  Google Scholar 

  • Olsen, L. F. and H. Degn. 1985. Chaos in biological systems.Q. Rev. Biophys. 18, 165–225.

    Article  Google Scholar 

  • Olsen, L. F., H. Degn, G. L. Truty and W. M. Schaffer. 1988. Oscillations and chaos in epidemics: A nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark.Theor. Pop. Biol. 33, 344–370.

    Article  MATH  Google Scholar 

  • Ortega, J. M. 1987.Matrix Theory A Second Course. New York, London: Plenum Press.

    MATH  Google Scholar 

  • Pakes, A. G. and R. A. Maller. 1990.Mathematical Ecology of Plant Species Competition. Cambridge, New York: Cambridge University Press.

    MATH  Google Scholar 

  • Pielou, E. C. 1977.Mathematical Ecology. New York, London, Sydney, Toronto: John Wiley & Sons.

    Google Scholar 

  • Rasband, S. N. 1990.Chaotic Dynamics of Nonlinear Systems. New York, Chichester, Brisbane, Toronto, Singapore: John Wiley & Sons.

    Google Scholar 

  • Schumacher, K. 1983. No-escape regions and oscillations in second order predator-prey recurrences.J. math. Biol. 16, 221–231.

    Article  MATH  MathSciNet  Google Scholar 

  • Winkler, A. J. 1962.General Viticulture. Berkely, Los Angeles: University of California Press.

    Google Scholar 

  • Young, L.-S. 1983. Entropy, Lyapunov exponents, and Hausdorff dimension in differentiable dynamical systems.IEEE Trans. Circuits Syst. CAS-30, 599–607.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, L.J.S., Hannigan, M.K. & Strauss, M.J. Mathematical analysis of a model for a plant-herbivore system. Bltn Mathcal Biology 55, 847–864 (1993). https://doi.org/10.1007/BF02460676

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460676

Keywords

Navigation