Skip to main content
Log in

Flow-induced deformation from pressurized cavities in absorbing porous tissues

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The behaviour of a cavity during an injection of fluid into biological tissue is considered. High cavity pressure drives fluid into the neighbouring tissue where it is absorbed by capillaries and lymphatics. The tissue is modelled as a nonlinear deformable porous medium with the injected fluid absorbed by the tissue at a rate proportional to the local pressure. A model with a spherical cavity in an infinite medium is used to find the pressure and displacement of the tissue as a function of time and radial distance. Analytical and numerical solutions for a step change in cavity pressure show that the flow induces a radial compression in the medium together with an annular expansion, the net result being an overall expansion of the medium. Thus any flow induced deformation of the material will aid in the absorption of fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Abramowitz, M. and I. A. Stegun. 1972.Handbook of Mathematical Functions. New York: Dover.

    MATH  Google Scholar 

  • Barry, S. I. 1990. Flow in a deformable porous medium. Ph.D. Thesis, University College, University of New South Wales, Australia.

    Google Scholar 

  • Barry, S. I. and G. K. Aldis. 1990. Comparison of models for flow induced deformation of soft biological tissue.J. Biomech. 23, 647–654.

    Article  Google Scholar 

  • Barry, S. I. and G. K. Aldis. 1991a. Unsteady flow induced deformation of porous materials.Int. J. Non-Linear Mech. 26, 687–699.

    Article  MATH  Google Scholar 

  • Barry, S. I. and G. K. Aldis. 1991b. Fluid Flow over a thin deformable porous layer.Z. A. M. P. 42, 633–648.

    Article  MATH  MathSciNet  Google Scholar 

  • Biot, M. A. 1941. General theory of three-dimensional consolidation.J. appl. Phys. 12, 155–164.

    Article  MATH  Google Scholar 

  • Biot, M. A. 1955. Theory of elasticity and consolidation for a porous anisotropic solid.J. appl. Phys. 26, 182–185.

    Article  MATH  MathSciNet  Google Scholar 

  • Biot, M. A.. 1956. Mechanics of deformation and acoustic propagation in porous media.J. appl. Phys. 27, 1482–1498.

    Google Scholar 

  • Bowen, R. M. 1980. Incompressible porous media models by the theory of mixtures.Int. J. Engng. Sci. 18, 1129–1148.

    Article  MATH  Google Scholar 

  • Ford, T. R., J. S. Sachs, J. B. Grotberg and M. R. Glucksberg. 1990.Mechanics of the perialveolar interstitium of the lung. First World Congress of Biomechanics, La Jolla, Vol. 1, p. 31.

    Google Scholar 

  • Friedman, M. H. 1971. General theory of tissue swelling with application to the corneal stroma.J. theor. Biol. 30, 93–109.

    Article  Google Scholar 

  • Holmes, M. H. 1983. A nonlinear diffusion equation arising in the study of soft tissue.Quart. App. Math. 61, 209–220.

    Google Scholar 

  • Holmes, M. H. 1984. Comparison theorems and similarity solution approximation for a nonlinear diffusion equation arising in the study of soft tissue.SIAM J. appl. Math. 44, 545–556.

    Article  MATH  MathSciNet  Google Scholar 

  • Holmes, M. H. 1985. A theoretical analysis for determining the nonlinear hydraulic permeability of a soft tissue from a permeation experiment.Bull. math. Biol. 47, 669–683.

    Article  Google Scholar 

  • Holmes, M. H. 1986. Finite deformation of soft tissue: analysis of a mixture model in uni-axial compression.J. biomech. Engng 108, 372–381.

    Google Scholar 

  • Holmes, M. H. and V. C. Mow. 1990. The nonlinear characteristics of soft gels and hydrated connective tissue in ultrafiltration.J. Biomech. 23, 1145–1156.

    Article  Google Scholar 

  • Hou, J. S., M. H. Holmes, W. M. Lai and V. C. Mow. 1989. Boundary conditions at the cartilage-synovial fluid interface for joint lubrication and theoretical verfications.J. biomech. Engng. 111, 78–87.

    Google Scholar 

  • Jain, R. and G. Jayaraman. 1987. A theoretical model for water flux through the arterial wall.J. biomech. Engng. 109, 311–317.

    Google Scholar 

  • Jayaraman, G. 1983. Water transport in the arterial wall—a theoretical study.J. Biomech. 16, 833–840.

    Article  Google Scholar 

  • Keele C. A. and E. Neil, 1971.Samson Wright's Applied Physiology, 12th Edn. London: Oxford University Press.

    Google Scholar 

  • Kenyon, D. E. 1976a. The theory of an incompressible solid-fluid mixture.Arch. Rat. Mech. Anal. 62, 131–147.

    MATH  MathSciNet  Google Scholar 

  • Kenyon, D. E. 1976b. Transient filtration in a porous elastic cylinder.J. appl. Mech. 98, 594–598.

    Google Scholar 

  • Kenyon, D. E. 1978. Consolidation in compressible mixtures.J. appl. Mech. 45, 727–732.

    Google Scholar 

  • Kenyon, D. E. 1979. A mathematical model of water flux through aortic tissue.Bull. math. Biol. 41, 79–90.

    Article  MathSciNet  Google Scholar 

  • Klanchar, M. and J. M. Tarbell. 1987. Modeling water flow through arterial tissue.Bull. math. Biol. 49, 651–669.

    Article  MATH  MathSciNet  Google Scholar 

  • Lai, W. M. and V. C. Mow. 1980. Drag induced compression of articular cartilage during a permeation experiment.Biorheology 17, 111–123.

    Google Scholar 

  • Lanir, Y. 1987. Biorheology and fluid flux in swelling tissues. I. Bicomponent theory for small deformations, including concentration effects.Biorheology 24, 173–187.

    Google Scholar 

  • Lanir, Y., S. Dikstein, A. Hartzshtark and V. Manny. 1990.In-vivo indentation of human skin.J. biomech. Engng. 112, 63–69.

    Google Scholar 

  • Middleman, S. 1972.Transport Phenomena in the Cardiovascular System, New York: Wiley-Interscience.

    Google Scholar 

  • Mow, V. C. and W. M. Lai. 1979. Mechanics of animal joints.Ann. Rev. Fluid Mech. 11, 247–288.

    Article  MATH  Google Scholar 

  • Mow, V. C., S. C. Kuei, W. M. Lai and C. G. Armstrong. 1980. Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiment.J. biomech. Engng. 102, 73–84.

    Article  Google Scholar 

  • Mow, V. C., M. H. Holmes and W. M. Lai. 1984. Fluid transport and mechanical properties of articular cartilage: a review.J. Biomech. 17, 377–394.

    Article  Google Scholar 

  • Mow, V. C., M. K. Kwan, W. M. Lai and M. H. Holmes. 1985. A finite deformation theory for nonlinearly permeable soft hydrated biological tissues. InFrontiers in Biomechanics, G. Schmid-Schoenbein, S. L-Y. Woo and B. W. Zweifach (Eds), pp. 153–179. New York: Springer-Verlag.

    Google Scholar 

  • Nicholson, C. 1985. Diffusion from an injected volume of a substance in brain tissue with arbitrary volume fraction and tortuosity.Brain Res. 333, 325–329.

    Article  Google Scholar 

  • Oomens, C. W. J., D. H. Van Campen and H. J. Grootenboer. 1987. A mixture approach to the mechanics of skin.J. Biomech. 20, 877–885.

    Article  Google Scholar 

  • Oomens, C. W. J. 1987.In vitro compression of a soft tissue layer on the a rigid foundation.J. Biomech. 20, 923–935.

    Article  Google Scholar 

  • Simon, B. R. and M. Gaballa. 1988. Poroelastic finite element models for the spinal motion segement including ionic swelling. InComputational Methods in Bioengineering, ASME R. L. Spilker and B. R. Simon (Eds).

  • Terzaghi, K. 1925.Erdbaumechanik auf Bodenphysikalischen Grundlagen. Wien: Deuticke.

    Google Scholar 

  • Yang, M. and L. A. Taber. 1990.A nonlinear poroelastic model for the developing chick heart. First World Congress of Biomechanics, La Jolla, Vol. 1, p. 152.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Barry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barry, S.I., Aldis, G.K. Flow-induced deformation from pressurized cavities in absorbing porous tissues. Bltn Mathcal Biology 54, 977–997 (1992). https://doi.org/10.1007/BF02460662

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460662

Keywords

Navigation