Skip to main content
Log in

Convection-Enhanced Transport into Open Cavities

Effect of Cavity Aspect Ratio

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Recirculating fluid regions occur in the human body both naturally and pathologically. Diffusion is commonly considered the predominant mechanism for mass transport into a recirculating flow region. While this may be true for steady flows, one must also consider the possibility of convective fluid exchange when the outer (free stream) flow is transient. In the case of an open cavity, convective exchange occurs via the formation of lobes at the downstream attachment point of the separating streamline. Previous studies revealed the effect of forcing amplitude and frequency on material transport rates into a square cavity (Horner in J Fluid Mech 452:199–229, 2002). This paper summarizes the effect of cavity aspect ratio on exchange rates. The transport process is characterized using both computational fluid dynamics modeling and dye-advection experiments. Lagrangian analysis of the computed flow field reveals the existence of turnstile lobe transport for this class of flows. Experiments show that material exchange rates do not vary linearly as a function of the cavity aspect ratio (A = W/H). Rather, optima are predicted for A ≈ 2 and A ≈ 2.73, with a minimum occurring at A ≈ 2.5. The minimum occurs at the point where the cavity flow structure bifurcates from a single recirculating flow cell into two corner eddies. These results have significant implications for mass transport environments where the geometry of the flow domain evolves with time, such as coronary stents and growing aneurysms. Indeed, device designers may be able to take advantage of the turnstile-lobe transport mechanism to tailor deposition rates near newly implanted medical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Ausimont (28 January 2002) Fomblin PFPE: Lubricants. http://www.ausimont.com/docs/fom_lube.html.

  2. Berry, J., J. E. Moore, Jr., V. S. Newman, W. Routh. In vitro flow visualization in stented artery segments. Ann. Biomed. Eng. 3:63–68, 1997.

    Google Scholar 

  3. Berry, J., A. Santamarina, J. E. Moore Jr., S. Roychowdhury, W. Routh. Experimental and computational flow evaluation of coronary stents. Ann. Biomed. Eng. 28:386–398, 2000.

    Article  Google Scholar 

  4. Bluestein, D., L. Niu, R. T. Schoephoerster, M. K. Dewanjee. Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus. Ann. Biomed. Eng. 25:344–356, 1997.

    Article  Google Scholar 

  5. D. Bluestein, C. Gutierrez, M. Londono, R. T. Schoephoerster. Vortex shedding in steady flow through a model of an arterial stenosis and its relevance to mural platelet deposition. Ann. Biomed. Eng. 27:763–773, 1999.

    Article  Google Scholar 

  6. Cebral, J. R., M. A. Castro, J. E. Burgess, R. S. Pergolizzi, M. J. Sheridan, C. M. Putman. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR: Am. J. Neuroradiol. 26:25502559, 2005.

    Google Scholar 

  7. Corbett, S. C., A. Ajdari, A. U. Coskun, H. Nayeb-Hashemi . Effect of pulsatile blood flow on thrombosis potential with a step wall transition. ASAIO. J. 56:290–295, 2010.

    Google Scholar 

  8. Duraiswamy, N., J. M. Cesar, R. T. Schoephoerster, J. E. Moore Jr. Effects of stent geometry on local flow dynamics and resulting platelet deposition in an in vitro model. Biorheology 45:547–561, 2008.

    Google Scholar 

  9. Duraiswamy, N., B. Jayachandran, J. Byrne, J. E. Moore Jr., R. T. Schoephoerster. Spatial distribution of platelet deposition in stented arterial models under physiologic flow. Ann. Biomed. Eng. 33:1767–1777, 2005

    Article  Google Scholar 

  10. Garasic, J. M., E. R. Edelman, J. C. Squire, P. Seifert, M. S. Williams, C. Rogers. Stent and artery geometry determine intimal thickening independent of arterial injury. Circulation 101:812–818, 2000.

    Article  Google Scholar 

  11. Gawaz, M., H. Langer, A. E. May. Platelets in inflammation and atherogenesis. J. Clin. Invest. 115:3378–3384, 2005

    Article  Google Scholar 

  12. Geers, A., I. Larrabide, A. Radaelli, H. Bogunovic, M. Kim, H. G. van Andel, C. Majoie, E. VanBavel, A. Frangi. Patient-specific computational hemodynamics of intracranial aneurysms from 3d rotational angiography and ct angiography: an in vivo reproducibility study. AJNR: Am. J. Neuroradiol. 32:581–586, 2011.

    Article  Google Scholar 

  13. Griffith, M. D., T. Leweke, M. C. Thompson, K. Hourigan. Pulsatile flow in stenotic geometries: flow behaviour and stability. J. Fluid Mech. 622:291–320, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  14. Haber, S., D. Yitzhak, A. Tsuda. Gravitational deposition in a rhythmically expanding and contracting alveolus. J. Appl. Physiol. 95:657–671, 2003.

    Article  Google Scholar 

  15. Henry, P. S., J. P. Butler, A. Tsuda. Kinematically irreversible acinar flow: A departure from classical dispersive aerosol transport theories. J. Appl. Physiol. 92:835–845, 2002.

    Article  Google Scholar 

  16. Higdon, J. J. L. Stokes flow in arbitrary two-dimensional domains: Shear flow over ridges and cavities. J. Fluid Mech. 159:195–226, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  17. Horner, M. Transport enhancement in open cellular flows. Ph.D. thesis, Northwestern University, 2002.

  18. Horner, M., G. Metcalfe, S. Wiggins, J. M. Ottino. Transport enhancement mechanisms in open cavities. J. Fluid Mech. 452:199–229, 2002.

    Article  MATH  Google Scholar 

  19. Jana, S. C., G. Metcalfe, J. M. Ottino. Experimental and computational studies of mixing in complex Stokes flows: the vortex mixing flow and multicellular cavity flows. J. Fluid Mech. 269:199–246, 1994.

    Article  MathSciNet  Google Scholar 

  20. Karino, T., H. L. Goldsmith. Adhesion of human platelets to collagen on the walls distal to a tubular expansion. Microvasc. Res. 17:238–262, 1979

    Article  Google Scholar 

  21. Karmonik, C., R. Klucznik, G. Benndorf. Blood flow in cerebral aneurysms: comparison of phase contrast magnetic resonance and computational fluid dynamics-preliminary experience. Rofo 180:209–215, 2008.

    Article  Google Scholar 

  22. Kolachalama, V. B., A. R. Tzafriri, D. Y. Arifin, E. R. Edelman. Luminal flow patterns dictate arterial drug deposition in stent-based delivery. J. Control Release 133:24–30, 2009.

    Article  Google Scholar 

  23. Kolandaivelu, K., R. Swaminathan, W. J. Gibson, V. B. Kolachalama, K. L. Nguyen-Ehrenreich, V. L. Giddings, L. Coleman, G. K. Wong, E. R. Edelman. Stent thrombogenicity early in high-risk interventional settings is driven by stent design and deployment and protected by polymer-drug coatings. Circulation 123:1400–1409, 2011.

    Article  Google Scholar 

  24. Kumar, H., M. H. Tawhai, E. A. Hoffman, C. L. Lin. The effects of geometry on airflow in the acinar region of the human lung. J. Biomech. 42:1635–1642, 2009.

    Article  Google Scholar 

  25. LaDisa, Jr. J. F., L. E. Olson, R. C. Molthen, D. A. Hettrick, P. F. Pratt, M. D. Hardel, J. R. Kersten, D. C. Warltier, P. S. Pagel. Altertions in wall shear stress predict sites of neointimal hyperplasia after stent implantation in rabbit iliac arteries. Am. J. Physiol. Heart Circ. Physiol. 288:H2465H2475, 2005.

  26. Laine-Pearson, F. E., P. E. Hydon. Alternating flow in a moving corner. Eur. J. Mech. B/Fluids 29:278–284, 2010.

    Article  MATH  Google Scholar 

  27. Lutostansky, E. M., G. Karner, G. Rappitsch, D. N. Ku, K. Perktold. Analysis of hemodynamic fluid phase mass transport in a separated flow region. J. Biomech. Eng. 125:189–196, 2003.

    Article  Google Scholar 

  28. Mackay, R. S., J. D. Meiss, I. C. Percival. Transport in Hamiltonian systems. Physica 13D:55–81, 1984.

    MathSciNet  Google Scholar 

  29. Massberg, S., K. Brand, S. Gröner, S. Page, E. Möller, I. Möller, W. Bergmeier, T. Richter, M. Lorenz, I. Konrad, B. Nieswandt, M. Gawaz. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J. Exp. Med. 196:887–896, 2002.

    Article  Google Scholar 

  30. Moffatt, H. K. Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18:1–18, 1964.

    Article  MATH  Google Scholar 

  31. Natarajan, S., M. Mokhtarzadeh-Dehghan. A numerical and experimental study of periodic flow in a model of a corrugated vessel with application to stented arteries. Med. Eng. Phys. 22:555–566, 2000.

    Article  Google Scholar 

  32. Occhialini, J. M., J. J. L. Higdon. Convective mass transport from rectangular cavities in viscous flow. J. Electrochem. Soc. 139:2845–2855, 1992.

    Article  Google Scholar 

  33. Ottino, J. M. The kinematics of mixing: stretching, chaos, and transport. Cambridge, MA: Cambridge University Press, 1989.

    MATH  Google Scholar 

  34. Pan, F., A. Acrivos. Steady flows in rectangular cavities. J. Fluid Mech. 28:643–655, 1967.

    Article  Google Scholar 

  35. Pant, S., N. W. Bressloff, G. Limbert. Geometry parameterization and multidisciplinary constrained optimization of coronary stents. Biomech. Model Mechan. 11:61–82, 2012.

    Article  Google Scholar 

  36. Pant, S., G. Limbert, N. Curzen, N. W. Bressloff. Multiobjective design optimisation of coronary stents. Biomaterials 32:7755–7773, 2011.

    Article  Google Scholar 

  37. Rajamohan, D., R. K. Banerjee, L. H. Back, A. A. Ibrahim, M. A. Jog. Developing pulsatile flow in a deployed coronary stent. J. Biomech. Eng. 128:347–359, 2006.

    Article  Google Scholar 

  38. Rayz, V., L. Boussel, M. Lawton, G. Acevedo-Bolton, L. Ge, W. Young, R. Higashida, D. Saloner. Numerical modeling of the flow in intracranial aneurysms: prediction of regions prone to thrombus formation. Ann. Biomed. Eng. 36:1793–1804, 2008.

    Article  Google Scholar 

  39. Robaina, S., B. Jayachandran, Y. He, A. Frank, M. R. Moreno, R. T. Schoephoerster, J. E. Moore Jr. Platelet adhesion to simulated stent surfaces. J. Endovasc. Ther. 10:978–986, 2003.

    Article  Google Scholar 

  40. Rogers, C., E. R. Edelman. Endovascular stent design dictates experimental restenois and thrombosis. Circulation 91:2995–3001, 1995.

    Article  Google Scholar 

  41. Rom-Kedar, V., A. Leonard, S. Wiggins. An analytical study of transport, mixing and chaos in an unsteady vortical flow. J. Fluid. Mech. 214:347–394, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  42. Schelin, A. B., G. Károlyi, de A. Moura, N. Booth, C. Grebogi. Chaotic advection in blood flow. Phys. Rev. E. 80:016,213, 2009.

    Google Scholar 

  43. Schoephoerster, R., F. Oynes, G. Nunez, M. Kapadvanjwala, M. Dewanjee. Effects of local geometry and fluid dynamics on regional platelet deposition on artificial surfaces. Arterioscler. Thromb. Vasc. Biol. 13:1806–1813, 1993.

    Article  Google Scholar 

  44. Shehata, A. K., J. D. Yang, A. C. West, V. Modi. Effect of an unsteady external flow in mass transfer to cavities. Intl. J. Heat Mass. Trans. 42:673–683, 1999.

    Article  MATH  Google Scholar 

  45. Steinman,. D. A., T. L. Poepping, M. Tambasco, R. N. Rankin, D. W. Holdsworth. Flow patterns at the stenosed carotid bifurcation: effect of concentric versus eccentric stenosis. Ann. Biomed. Eng. 28:415–423, 2000.

    Article  Google Scholar 

  46. Stroud, J. S., S. A. Berger, D. Saloner. Numerical analysis of flow through a severely stenotic carotid artery bifurcation. J. Biomech. Eng. 124:9–20, 2002.

    Article  Google Scholar 

  47. Sukavaneshvar, S., G. M. Rosa, K. A. Solen. Enhancement of stent-induced thromboembolism by residual stenoses: contribution of hemodynamics. Ann. Biomed. Eng. 28:182–193, 2000.

    Article  Google Scholar 

  48. Sznitman, J., F. Heimsch, T. Heimsch, D. Rusch, T. Rösgen. Three-dimensional convective alveolar flow induced by rhythmic breathing motion of the pulmonary acinus. Trans. ASME. 129:658–665, 2007.

    Google Scholar 

  49. Tambasco, M., D. A. Steinman. Path-dependent hemodynamics of the stenosed carotid bifurcation. Ann. Biomed. Eng. 31:1054–1065, 2003.

    Article  Google Scholar 

  50. Tateshima, S., K. Tanishita, H. Omura, J. Villablanca, F. Vinuela. Intra-aneurysmal hemodynamics during the growth of an unruptured aneurysm: In vitro study using longitudinal ct angiogram database. AJNR: Am. J. Neuroradiol. 28:622–627, 2007.

    Google Scholar 

  51. Tsuda, A., F. S. Henry, J. P. Butler. Chaotic mixing of alveolated duct flow in rhythmically expanding pulmonary acinus. J. Appl. Physiol. 79:1055–1063, 1995.

    Google Scholar 

  52. Tsuda , A., Y. Otani, J. P. Butler. Acinar flow irreversibility caused by perturbations in reversible alveolar wall motion. J. Appl. Physiol. 86:977–984, 1999.

    Google Scholar 

  53. Varghese, S. S., S. H. Frankel. Numerical modeling of pulsatile turbulent flow in stenotic vessels. J. Biomech. Eng. 125:445–460, 2003.

    Article  Google Scholar 

  54. Wiggins, S. Chaotic Transport in Dynamical Systems. New York, NY: Springer, 1992

    Book  MATH  Google Scholar 

Download references

Acknowledgments

Conflict of Interest: Marc Horner, Guy Metcalfe, and J.M. Ottino declare that they have no conflict of interest. Human and Animal Rights: This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Horner.

Additional information

Associate Editor Francesco Migliavacca oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horner, M., Metcalfe, G. & Ottino, J.M. Convection-Enhanced Transport into Open Cavities. Cardiovasc Eng Tech 6, 352–363 (2015). https://doi.org/10.1007/s13239-015-0217-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-015-0217-y

Keywords

Navigation