Skip to main content
Log in

Time-continuous branching walk models of unstable gene amplification

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider a stochastic mechanism of the loss of resistance of cancer cells to cytotoxic agents, in terms of unstable gene amplification. Two models being different versions of a time-continuous branching random walk are presented. Both models assume strong dependence in replication and segregation of the extrachromosomal elements. The mathematical part of the paper includes the expression for the expected number of cells with a given number of gene copies in terms of modified Bessel functions. This adds to the collection of rare explicit solutions to branching process models. Original asymptotic expansions are also demonstrated. Fitting the model to experimental data yields estimates of the probabilities of gene amplification and deamplification. The thesis of the paper is that purely stochastic mechanisms may explain the dynamics of reversible drug resistance of cancer cells. Various stochastic approaches and their limitations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Abramowitz, M. and I. A. Stegun. 1964.Handbook of Mathematical Functions. Washington: National Bureau of Standards.

    MATH  Google Scholar 

  • Alitalo, K. and M. Schwab. 1986. Oncogene amplification in tumor cells.Adv. Cancer Res. 47, 235–281.

    Article  Google Scholar 

  • Athreya, K. B. and P. E. Ney. 1972.Branching Processes. New York: Springer.

    MATH  Google Scholar 

  • Axelrod, D. E., K. A. Baggerly and M. Kimmel. 1992. Gene amplification by unequal sister chromatid exchange: Probabilistic modeling and analysis of drug resistance data.J. theoret. Biol. (to appear).

  • Brown, P. C., S. M. Beverly and R. T. Schimke. 1981. Relationship of amplified dihydrofolate reductase genes to double minute chromosomes in unstably resistant mouse fibroblasts cell lines.Mol. Cell. Biol.,1, 1077–1083.

    Google Scholar 

  • de Bruijn, N. G. 1958.Asymptotic Methods in Analysis. Amsterdam: North-Holland.

    MATH  Google Scholar 

  • Cooper, N. S., M. E. Brown and C. A. Caulcot. 1987. A mathematical method for analysing plasmid stability in micro-organisms.J. Gen. Microbiol. 133, 1871–1880.

    Google Scholar 

  • Doetsch, G. 1964.Introduction to the Theory and Application of the Laplace Transform. Berlin: Springer.

    Google Scholar 

  • Harnevo, L. E. and Z. Agur. 1991. The dynamics of gene amplification described as a multitype compartmental model and as a branching process.Math. Biosci. 103, 115–138.

    Article  MATH  MathSciNet  Google Scholar 

  • Harnevo, L. E. and Z. Agur. 1992. Drug resistance as a dynamic process in a model for multistep gene amplification under various levels of selection stringency.Cancer Chemotherapy and Pharmacology 30, 469–476.

    Article  Google Scholar 

  • Hyrien, O., M. Debatisse, G. Buttin and B. R. de Saint Vincent. 1988. The multicopy appearance of a large inverted duplication and the sequence at the inversion joint suggest a new model for gene amplification.EMBO Jl 7, 407–417.

    Google Scholar 

  • Jones, R. B., C. K. Lumpkin and J. R. Smith. 1980. A stochastic model for cellular senescence. Part I. Theoretical considerations.J. theoret. Biol. 86, 581–592.

    Article  Google Scholar 

  • Kaufman, R. J., P. C. Brown and R. T. Schimke. 1981. Loss and stabilization of amplified dihydrofolate reductase genes in mouse sarcoma S-180 cell lines.Mol. Cell. Biol. 1, 1084–1093.

    Google Scholar 

  • Kimmel, M. and D. E. Axelrod. 1990. Mathematical models of gene amplification with applications to cellular drug resistance and tumorigenicity.Genetics 125, 633–644.

    Google Scholar 

  • Kimmel, M., D. E. Axelrod and G. M. Wahl. 1992. A branching process model of gene amplification following chromosome breakage.Mutation Res. 276, 225–246.

    Google Scholar 

  • Lenski, R. E. and J. E. Bouma. 1987. Effects of segregation and selection on instability of plasmid pACYC184 inEscherichia coli.Brit. J. Bacteriol. 169, 5314–5316.

    Google Scholar 

  • Novick, R. P. and F. C. Hoppensteadt. 1978. On plasmid incompatibility.Plasmid 1, 421–434.

    Article  Google Scholar 

  • Pakes, A. G. 1973. Conditional limit theorems for a left-continuous random walk.J. Appl. Probability 10, 39–53.

    Article  MATH  MathSciNet  Google Scholar 

  • Perelson, A. S. and G. I. Bell. 1977. Mathematical models for the evolution of multigene families by unequal crossing over.Nature 265, 304–310.

    Article  Google Scholar 

  • Peterson, J. A. 1984. Analysis of variability in albumin content of sister hepatoma cells and a model for geometric phenotypic variability (Quantitative Shift Model).Somatic, Cell mol. Genetics 10, 39–53.

    Google Scholar 

  • Seneta, E. and S. Tavare. 1983. Some stochastic models for plasmid copy number.Theoret. Pop. Biol. 23, 241–256.

    Article  MATH  MathSciNet  Google Scholar 

  • Schimke, R. T. 1984. Gene amplification in cultured animal cells.Cell 37, 706–713.

    Article  Google Scholar 

  • Schimke, R. T. 1988. Gene amplification in cultured cells.J. Biol. Chem.,263, 5989–5992.

    Google Scholar 

  • Schimke, R. T., S. W. Sherwood, A. B. Hill and R. N. Johnston. 1986. Overreplication and recombination of DNA in higher eukaryotes: Potential consequences and biological implications.Proc. Natl. Acad. Sci. U.S.A. 83, 2157–2161.

    Article  Google Scholar 

  • Smith, G. P. 1976. Evolution of repeated DNA sequences by unequal crossover,Science 191, 528–535.

    Google Scholar 

  • Smith, K. A., P. A. Gorman, M. B. Stark, R. P. Groves and G. R. Stark 1990. Distinctive chromosomal structures are formed very early in the amplification of CAD genes in Syrian hamster cells.Cell 63, 1219–1227.

    Article  Google Scholar 

  • Stark, G. R. 1986. DNA amplification in drug resistant cells and in tumours.Cancer Surveys 5, 1–22.

    Google Scholar 

  • Stark, G. R., M. Debatisse, E. Glulotto and G. M. Wahl. 1989. Recent progress in understanding mechanisms of mammalian DNA amplification.Cell 57, 901–908.

    Article  Google Scholar 

  • Stark, G. R. and G. M. Wahl. 1984. Gene amplification.Ann. Rev. Biochem. 53, 447–491.

    Article  Google Scholar 

  • Wahl, G. 1989. The importance of circular DNA in mammalian gene amplification.Cancer Res. 49, 1330–1340.

    Google Scholar 

  • Widle, B., B. W. Draper, Y. Yin, S. O'Gorman and G. M. Wahl. 1991. A central role for chromosome breakage in gene amplification, deletion, formation, and amplicon integration.Genes and Development,5, 160–174.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimmel, M., Stivers, D.N. Time-continuous branching walk models of unstable gene amplification. Bltn Mathcal Biology 56, 337–357 (1994). https://doi.org/10.1007/BF02460646

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460646

Keywords

Navigation