Skip to main content
Log in

A kinetic model of rat proximal tubule transport-load-dependent bicarbonate reabsorption along the tubule

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A model is presented of solute and water reabsorption along the proximal tubule of the rat kidney based on kinetic descriptions of the main membrane transport systems, in order to assess the extent to which these kinetics suffice to explain certain aspects of the global transport behaviour in this segment, especially with respect to bicarbonate reabsorption. The model includes in the apical membrane, an active proton pump, Na+/H+ antiport, Na-coupled transport of organic solutes, Cl/formate exchange with formic acid recycling, and membrane conductances to protons and K+. In the baso-lateral membrane, besides the Na+/K+ pump, the model includes Na+-3HCO 3 and electroneutral K+-Cl cotransporters, and membrane conductances for K+, H+, and, optionally, for Cl. Appropriate passive diffusional pathways were included in both cell membranes and in the paracellular pathway. Using mass balance and electoneutrality constraints, these transport systems were built into an epithelial model which was then integrated (by finite difference approximation) into a model of a longitudinal tubule. Simulated cellular solute concentrations and luminal concentration profiles were in good agreement with reported experimental observations. We show that, given the reported transport kinetics for the Na+/H+ antiporter, a hitherto unexplained observation concerning load-dependent bicarbonate reabsorption can be shown mainly to result from the nonlinear longitudinal concentration profile for bicarbonate and pH. We also discuss problems of transcellular Cl transport in the light of recent reports of basolateral Cl conductance and observations relevant to apical Cl/formate (or other base) exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

o, c, b:

used as subscripts or superscripts to indicate luminal, intracellular, or blood (peritubular) compartments, respectively

[x] i ,(x) i :

concentration, [·], or activity, (·), of solutex in compartmenti (mM)

J x :

transmembrane flux of speciesx (pmol min−1 mm−1)

V xmax :

maximum rate of transport in equations forJ x (pmol min−1 mm−1, unless noted otherwise)

k x i :

dissociation constant for speciesx in compartmenti (mM)

ψ ap :

apical membrane potentialψ oψ c (mV)

ψ 12 :

transmembrane potential,ψ 1ψ 2, between any two (mV) compartments 1 and 2

P x :

permeability constant for solutex (nl min−1 mm−1)

σ x :

reflection coefficient for solutex

z x :

ionic valence of solutex

L p :

water filtration coefficient (nl min−1 mm−1 mmHg−1)

ΔCOP:

colloid oncotic pressure difference (lumen-blood) (mmHg)

Δp :

hydrostatic pressure difference (lumen-blood) (mmHg)

R, T, and ℱ:

universal gas constant, temperature (K), and Faraday constant

GFR and SNGFR:

glomerular filtration rate and single nephron glomerular filtration rate Activity coefficients for ionic solutes were taken to be 0.75 (Edelmanet al., 1978)

Literature

  • Alpern, R. J., M. G. Cogan and F. C. Rector, Jr. 1982. Effect of luminal bicarbonate concentration on proximal acidification in the rat.Am. J. Physiol. 243, F53-F59.

    Google Scholar 

  • Alpern, R. J., M. G. Cogan and F. C. Rector, Jr. 1983. Flow dependence of proximal tubular bicarbonate absorption.Am. J. Physiol. 245, F478-F484.

    Google Scholar 

  • Aronson, P. S. 1985. Properties of the renal Na+-H+ exchanger.Ann. N. Y. Acad. Sci. 456, 220–228.

    Google Scholar 

  • Aronson, P. S., J. Nee and M. A. Suhm. 1982. Modifier role of internal H+ in activating the Na+-H+ exchanger in renal microvillus membrane vesicles.Nature 299, 161–163.

    Article  Google Scholar 

  • Aronson, P. S., M. A. Suhm and J. Nee. 1983. Interaction of external H+ with the Na+-H+ exchanger in renal microvillus membrane vesicles.J. biol. Chem. 258, 6767–6771.

    Google Scholar 

  • Bank, N., H. S. Aynedjian and B. F. Mutz. 1985. Evidence for a DCCD-sensitive component of proximal bicarbonate absorption.Am. J. Physiol. 249, F636-F644.

    Google Scholar 

  • Bernstein, H., L. J. Atherton and W. M. Deen. 1986. Axial heterogeneity and filtered-load dependence of proximal bicarbonate reabsorption.Biophys. J. 50, 239–252.

    Google Scholar 

  • Berry, C. A. and F. C. Rector, Jr. 1991. Mechanism of proximal NaCl reabsorption in the proximal tubule of the mammalian kidney.Seminars in Nephrology 11, 86–97.

    Google Scholar 

  • Brenner, B. M., C. M. Bennett and R. W. Berliner. 1968. The relationship between glomerular filtration rate and sodium reabsorption by the proximal tubule of the rat nephron.J. clin. Invest. 47, 1358–1374.

    Google Scholar 

  • Cassola, A. C., M. Mollinhauer and E. G. Frömter. 1983. The intracellular chloride activity of rat kidney proximal tubular cells.Pflügers Arch. ges. Physiol. 399, 259–265.

    Article  Google Scholar 

  • Cogan, M. G., D. A. Maddox, M. S. Lucci and F. C. Rector, Jr. 1979. Control of proximal bicarbonate reabsorption in normal and acidotic rats.J. clin. Invest. 64, 1168–1180.

    Google Scholar 

  • Civan, M. M. and R. J. Bookman. 1982. Transepithelial Na transport and the intracelular fluids: a computer study.J. Membrane Biol. 65, 63–80.

    Article  Google Scholar 

  • Corman, B., S. R. Thomas, R. McLeod and C. de Rouffignac. 1980. Water and total CO2 reabsorption along the rat proximal convoluted tubule.Pflügers Arch. ges. Physiol. 389, 45–53.

    Article  Google Scholar 

  • DuBose, D. T., A. Bidani, C. R. Caflich, F. J. Gennari, D. A. Maddox and W. M. Deen. 1991. Comments on pCO2 in renal cortex.Am. J. Physiol. 260, F608-F609.

    Google Scholar 

  • Edelman, A., S. Curci, I. Samarzija and E. G. Frömter. 1978. Determination of intracellular K+ activity in rat kidney proximal tubular cells.Pflügers Arch. ges. Physiol. 378, 37–45.

    Article  Google Scholar 

  • Frömter, E. G., G. Rumrich and K. J. Ullrich. 1973. Phenomenologic description of Na+, Cl, and HCO 3 absorption from proximal tubule of the rat kidney.Pflügers Arch. ges. Physiol. 343, 189–220.

    Article  Google Scholar 

  • Garay, R. P. and P. J. Garrahan. 1973. The interaction of sodium and potassium with the sodium pump in red cells.J. Physiol. 231, 297–325.

    Google Scholar 

  • Gennari, F. J., C. Helmle-Kolb and H. Mürer. 1992. Influence of extracellular pH and perfusion rate on Na+/H+ exchange in cultured opossum kidney cells.Pflügers Arch. ges. Physiol. 420, 153–158.

    Article  Google Scholar 

  • Green, R., G. Giebisch, R. Unwin and A. M. Weinstein. 1991. Coupled water transport by rat proximal tubule.Am. J. Physiol. 261, F1046-F1054.

    Google Scholar 

  • Hill, A. 1980. Salt-water coupling in leaky epithelia.J. Membrane Biol. 56, 177–182.

    Article  Google Scholar 

  • Hoffman, J. and D. C. Tosteson. 1971. Active sodium and potassium transport in high potassium and low potassium sheep red cells.J. gen. Physiol. 58, 438–466.

    Article  Google Scholar 

  • Huss, R. E. and J. L. Stephenson. 1979. A mathematical model of proximal tubule absorption.J. Membrane Biol. 47, 377–399.

    Article  Google Scholar 

  • Karnisky, L. P. and P. S. Aronson. 1985. Chloride/formate exchange with formic acid recycling: a mechanism of active chloride transport across epithelial membranes.Proc. natn. Acad. Sci. U.S.A. 82, 6362–6365.

    Article  Google Scholar 

  • Kimmich, G. A., J. Randles, D. Restrepo and M. Montrose. 1985. The potential dependence of the intestinal Na+-dependent sugar transporter.Ann. N. Y. Acad. Sci. 456, 63–76.

    Google Scholar 

  • Krahn, T. A., P. S. Aronson and A. M. Weinstein. 1992. Formic acid permeability in a mathematical model of a villous membrane.J. Am. Soc. Nephrol. 3, 812.

    Google Scholar 

  • Krapf, R., C. A. Berry and A. S. Verkman. 1988. Estimation of intracellular chloride activity in isolated perfused rabbit proximal convoluted tubules using a fluorescent indicator.Biophys. J. 53, 955–962.

    Google Scholar 

  • Kurtz, I. and G. Nagami. 1992. Apical Cl/base exchange in the rabbit superficial S2 proximal tubule is mediated by hydroxyl ions.J. Am. Soc. Nephrol. 3, 781.

    Google Scholar 

  • Lew, V. L., H. G. Ferreira and T. Moura. 1979. The behaviour of transporting epithelial cells: I. Computer analysis of a basic model.Proc. R. Soc. B206, 53–83.

    Article  Google Scholar 

  • Lew, V. L., C. J. Freeman, O. E. Ortiz and R. M. Bookchin. 1991. A mathematical model of the volume, pH, and ion content regulation in reticulocytes. Application to the pathophysiology of sickle cell dehydration.J. clin. Invest. 87, 100–112.

    Google Scholar 

  • Liu, F.-Y. and M. Cogan. 1984. Axial heterogeneity in the rat proximal convoluted tubule. I. Bicarbonate, chloride, and water transport.Am. J. Physiol. 247, F816-F821.

    Google Scholar 

  • Maddox, D. A., S. M. Fortin, A. Tartini, W. D. Barnes and F. J. Gennari. 1992. Effect of changes in glomerular filtration rate on Na+/H+ exchange in rat renal cortex.J. clin. Invest. 89, 1296–1303.

    Google Scholar 

  • Maddox, D. A. and F. J. Gennari. 1987. The early proximal tubule: a high capacity delivery-responsive reabsorptive site.Am. J. Physiol. 252, F573-F584.

    Google Scholar 

  • Mello Aires, M. de, M. J. Lopes and G. Malnic. 1990. pCO2 in renal cortex.Am. J. Physiol. 259, F357-F365.

    Google Scholar 

  • Mello Aires, M. de and G. Malnic. 1991. Letter to the editor.Am. J. Physiol. 260, F610-F612.

    Google Scholar 

  • Nord, E. P., D. Goldfarb, N. Mikhail, P. Moradeshagi, A. Hafezi, S. Vaystub, E. J. Cragoe, Jr and L. G. Fine. 1986. Characteristics of the Na+−H+ antiporter in the intact renal proximal tubular cell.Am. J. Physiol. 250, F539-F550.

    Google Scholar 

  • Preisig, P. A. 1992. Luminal flow rate regulates proximal tubule H−HCO3 transporters.Am. J. Physiol. 262, F47-F54.

    Google Scholar 

  • Preisig, P. A. and R. J. Alpern. 1989. Contributions of cellular leak pathways to net NaHCO3 and NaCl absorption.J. clin. Invest. 83, 1859–1867.

    Article  Google Scholar 

  • Schafer, J. A., C. S. Patlak and T. E. Andreoli. 1975. A component of fluid absorption linked to passive ion flows in superficial pars recta.J. gen. Physiol. 66, 445–471.

    Article  Google Scholar 

  • Schild, L., G. Giebisch, L. P. Karniski and P. S. Aronson. 1987. Effects of formate on volume reabsorption in the rabbit proximal tubuleJ. clin. Invest. 79, 32–38.

    Google Scholar 

  • Semenza, G., M. Kessler, U. Schmidt, J. C. Venter and C. M. Fraser. 1985. The small intestinal sodium-glucose cotransporter(s).Ann. N.Y. Acad. Sci 456, 83–96.

    Google Scholar 

  • Strieter, J., J. L. Stephenson, L. G. Palmer and A. M. Weinstein. 1990. Volume-activated chloride permeability can mediate cell volume regulation in a mathematical model of a tight epithelium.J. gen. Physiol. 96, 319–344.

    Article  Google Scholar 

  • Thomas, S. R. and G. Dagher. 1991. A modelling study of solute reabsorption along rat proximal tubule: Implications in hypertension.FASEB J. 5, A738.

    Google Scholar 

  • Thomas, S. R. and D. C. Mikulecky. 1978. A network thermodynamic model of salt and water flow across the kidney proximal tubule.Am. J. Physiol. 235, F638-F648.

    Google Scholar 

  • Ullrich, K. G. 1973. Permeability characteristics of the mammalian nephron. In:Handbook of Physiology. Renal Physiology, Section, 8, Chapter 12, pp. 377–398. Washington, DC: American Physiological Society.

    Google Scholar 

  • Ullrich, K. G., G. Rumrich and K. Baumann. 1975. Renal proximal tubuar buffer-(glycodiazine) transport. Inhomogeneity of local transport rate, dependence on sodium, effect of inhibitors, and chronic adaptation.Pflügers Arch. ges. Physiol. 357, 149–163.

    Article  Google Scholar 

  • Verkman, A. S. and R. J. Alpern. 1987. Kinetic transport model for cellular regulation of pH and solute concentration in the renal proximal tubule.Biophys. J. 51, 533–546.

    Google Scholar 

  • Wang, K. W. and W. M. Deen 1980. Chemical kinetic and diffusional limitations on bicarbonate reabsorption by the proximal tubule.Biophys. J. 31, 161–182.

    Article  Google Scholar 

  • Wang, T., G. Giebisch and P. S. Aronson. 1992. Effects of formate and oxalate on volume absorption in rat proximal tubule.Am. J. Physiol. 263, F37-F42.

    Google Scholar 

  • Weinstein, A. M. 1986. A mathematical model of the rat proximal tubule.Am. J. Physiol. 250, F860-F873.

    Google Scholar 

  • Weinstein, A. M. 1987. Convective paracellular solute flux: a source of ion-ion interaction in the epithelial transport equations.J. gen. Physiol. 89, 501–518.

    Article  Google Scholar 

  • Weinstein, A. M. 1992. Chloride transport in a mathematical model of the rat proximal tubule.Am. J. Physiol. 263, F784-F798.

    Google Scholar 

  • Yoshitomi, K., B. C. Burkhardt and E. G. Frömter. 1985. Rheogenic sodium-bicarbonate cotransport in the peritubular cell membrane of rat.Pflügers Arch. ges. Physiol. 405, 360–366.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, S.R., Dagher, G. A kinetic model of rat proximal tubule transport-load-dependent bicarbonate reabsorption along the tubule. Bltn Mathcal Biology 56, 431–458 (1994). https://doi.org/10.1007/BF02460466

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460466

Keywords

Navigation