Skip to main content
Log in

Theoretical study of a two-dimensional autocatalytic model for calcium dynamics at the extracellular fluid-bone interface

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The temporal behaviours of the nonlinear substructure of a self-organized compartmental model of calcium metabolism were investigated. The order-two autocatalytic process included in this simple two-dimensional model is compared to some secondary nucleation mechanisms which should take place at the extracellular fluid-bone interface. The model gives rise to complex dynamic behaviours, and multistability properties, involving up to two stable periodic regimes (birhythmicity), were established in different topological configurations. The bifurcations occurring on the boundaries between regions of different qualitative behaviour have been determined. These properties are discussed in relation to the dynamical behaviour of other two-variable models, especially those including the same nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Andronov, A. A., E. A. Leontovitch, I. I. Gordon and A. G. Maier. 1973.Theory of Bifurcations of Dynamic Systems on a Plane. New York: Wiley Interscience.

    Google Scholar 

  • Bar-Eli, K. 1981. “The Behavior of a Multistable Chemical System near the Critical Point.” InNonlinear Phenomena in Chemical Dynamics, C. Vidal and A. Pacault (Eds), pp. 228–239. Berlin: Springer.

    Google Scholar 

  • Borgis, D. and M. Moreau. 1984. “Two-Cell Stochastic Model of the Schlögl Reaction with Small Diffusional Coupling.”J. statist. Phys.,37, 631–651.

    Article  MathSciNet  Google Scholar 

  • De Kepper, P. and J. Boissonade. 1985. “From Bistability to Sustained Oscillations in Homogeneous Chemical Systems in Flow Reactor Mode.” InOscillations and Travelling Waves in Chemical Systems, R. J. Field and M. Burger (Eds), pp. 223–256. New York: Wiley Interscience.

    Google Scholar 

  • Eanes, E. D. and J. D. Termine. 1983. “Calcium in Mineralized Tissues.” InCalcium in Biology, T. G. Spiro (Ed.), pp. 203–233. New York: Wiley Interscience.

    Google Scholar 

  • Epstein, I. R. 1983. “Oscillations and Chaos in Chemical Systems.”Physica D 7, 47–56.

    Article  Google Scholar 

  • — 1984. “Complex Dynamical Behavior in ‘Simple’ Chemical Systems.”J. phys. Chem. 88, 187–198.

    Article  Google Scholar 

  • Garside, J. R. and J. Davey. 1980. “Secondary Contact Nucleation Kinetics, Growth and Scale-up.”Chem. Eng. Commun.,4, 393–424.

    Google Scholar 

  • Goldbeter, A., J. L. Martiel and O. Decroly. 1984. “From Excitability and Oscillations to Birhythmicity and Chaos in Biochemical Systems.” InDynamics of Biochemical Systems, J. Ricard and A. Cornish-Bowden (Eds), pp. 173–212. New York: Plenum Press.

    Google Scholar 

  • Golubitsky, M. and W. F. Langford. 1981. “Classification and Unfoldings of Degenerate Hopf Bifurcations.”J. diff. Equat. 41, 375–415.

    Article  MATH  MathSciNet  Google Scholar 

  • — and D. G. Schaeffer. 1985.Singularities and Groups in Bifurcation Theory. New York: Springer.

    MATH  Google Scholar 

  • Gray, P. and S. K. Scott. 1984. “Autocatalytic Reactions in the Isothermal Continuous Stirred Tank Reactor.”Chem. Eng. Sci. 39, 1087–1097.

    Article  Google Scholar 

  • Guckenheimer, J. 1986. “Multiple Bifurcation Problems for Chemical Reactors.”Physica D 20, 1–20.

    Article  MATH  MathSciNet  Google Scholar 

  • — and P. H. Holmes. 1983.Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields. New York: Springer.

    Google Scholar 

  • Hassard, B. D., N. D. Kazarinoff and Y. H. Wan. 1981.Theory and Applications of Hopf Bifurcation. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • — and Y. H. Wan. 1978. “Bifurcation Formulae Derived from Center Manifold Theory.”J. math. Analysis Appl. 63, 297–312.

    Article  MATH  MathSciNet  Google Scholar 

  • Larson, M. A. and J. Garside. 1986. “Solute Clustering and Interfacial Tension.”J. Crystal Growth 76, 88–92.

    Article  Google Scholar 

  • Markus, M. and B. Hess. 1984. “Transitions between Oscillatory Modes in a Glycolytic Model System.”Proc. natl. Acad. Sci. U.S.A. 81, 4394–4398.

    Article  Google Scholar 

  • Maselko, J., M. Alamgir and I. R. Epstein. 1986. “Bifurcation Analysis of a System of Coupled Chemical Oscillators: Bromate-Chlorite-Iodide.”Physica D 19, 153–161.

    Article  MathSciNet  Google Scholar 

  • Merkin, J. H., D. J. Needham and S. K. Scott. 1986. “Oscillatory Chemical Reactions in Closed Vessels.”Proc. R. Soc. Lond. A 406, 299–323.

    Article  Google Scholar 

  • Moran, F. and A. Goldbeter. 1984. “Onset of Birhythmicity in a Regulated Biochemical System.”Biophys. Chem. 20, 149–156.

    Article  Google Scholar 

  • Nancollas, G. H. 1979. “The Growth of Crystals in Solution.”Adv. Colloids and Interface Sci. 10, 215–252.

    Article  Google Scholar 

  • Nelson, D. G. A. and J. D. McLean. 1984. “High-Resolution Electron Microscopy of Octacalcium Phosphate and its Hydrolysis Products.”Calcif. Tissue Int. 36, 219–232.

    Article  Google Scholar 

  • Neuman, M. W. 1982. “Blood: Bone Equilibrium.”Calcif. Tissue Int. 34, 117–120.

    Article  Google Scholar 

  • Neuman, W. F. and M. W. Neuman. 1958.The Chemical Dynamics of Bone Mineral. Chicago: University of Chicago Press.

    Google Scholar 

  • Nicolis, G. and I. Prigogine. 1977.Self-organization in Nonequilibrium Systems. New York: Wiley Interscience.

    MATH  Google Scholar 

  • Nienow, A. W. and R. Conti. 1978. “Particle Abrasion at High Solids Concentration in Stirred Vessels.”Chem. Eng. Sci. 33, 1077–1086.

    Article  Google Scholar 

  • Ottens, E. P. and E. J. de Jong. 1973. “A Model for Secondary Nucleation in a Stirred Vessel Cooling Crystallizer.”Ind. Eng. Chem. Fundam. 12, 179–184.

    Article  Google Scholar 

  • Perault-Staub, A. M., P. Brezillon, P. Tracqui and J. F. Staub. 1984. “A Self-organized Temporal Model for Rat Calcium Metabolism: Mineral Nonlinear Reaction, Circadian Oscillations.” InPhysiological Systems: Dynamics and Controls, pp. 55–61. Oxford: Institute of Measurement and Control.

    Google Scholar 

  • Richter, P. H. 1984. “Entrainment of Chemical Oscillators and Resonance Dissipation.”Physica D 10, 353–368.

    Article  MathSciNet  Google Scholar 

  • Schlög, F. 1972. Chemical Reaction Models for Non-equilibrium Phase Transitions.”Z. Physik 253, 147–161.

    Article  Google Scholar 

  • Schwarz, I. B. 1984. “Random Mixed Modes Due to Fluctuations in the Belousov-Zhabotinskii Reaction”.Phys. Lett. 102A, 25–31.

    Google Scholar 

  • Sel'kov, E. E. 1968. “Self-oscillations in Glycolysis.”Eur. J. Biochem. 4, 79–86.

    Article  Google Scholar 

  • —. 1970. “Two Alternative Autooscillating Stationary States in Thiol Metabolism-Two Alternative Types of Cell Reproduction: Normal and Malignant One.”Biophysika 15, 1065–1073.

    Google Scholar 

  • Staub, J. F., A. M. Perault-Staub and G. Milhaud. 1979. “Endogenous Nature of Circadian Rhythms in Calcium Metabolism.”Am. J. Physiol. 237, R311-R317.

    Google Scholar 

  • Staub, J. F., P. Tracqui, P. Brezillon, G. Milhaud and A. M. Perault-Staub. 1987. “Calcium Metabolism in the Rat: A Temporal Self-organized Model.”Am. J. Physiol. In press.

  • Tracqui, P., P. Brezillon, J. F. Staub, A. M. Perault-Staub and G. Milhaud. 1985. “Diversité et Complexité des Comportements Dynamiques Temporels d'un Modèle Autocatalytique Simple.”C. R. Acad. Sc. Paris 300, 253–258.

    MathSciNet  Google Scholar 

  • Tyson, J. J. and S. Kauffman. 1975. “Control of Mitosis by a Continuous Biochemical Oscillation: Synchronization; Spatially Inhomogeneous Oscillations.”J. math. Biol. 1, 289–310.

    MATH  Google Scholar 

  • — and J. C. Light. 1973. “Properties of Two-component Bimolecular and Trimolecular Chemical Reaction Systems.”J. chem. Phys. 59, 4164–4173.

    Article  Google Scholar 

  • Urist, M. R. (Ed.). 1980.Fundamental and Clinical Bone Physiology. Philadelphia: Lippincott.

    Google Scholar 

  • Vaganov, D. A., N. G. Samoilenko and V. G. Abramov. 1978. “Periodic Regimes of Continuous Stirred Tank Reactors.”Chem. Eng. Sci. 33, 1133–1140.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tracqui, P., Perault-Staub, A.M., Milhaud, G. et al. Theoretical study of a two-dimensional autocatalytic model for calcium dynamics at the extracellular fluid-bone interface. Bltn Mathcal Biology 49, 597–613 (1987). https://doi.org/10.1007/BF02460138

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460138

Keywords

Navigation