Skip to main content
Log in

Cell communities and robustness in development

  • Note
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The robustness of patterning events in development is a key feature that must be accounted for in proposed models of these events. When considering explicitly cellular systems, robustness can be exhibited at different levels of organization. Consideration of two widespread patterning mechanisms suggests that robustness at the level of cell communities can result from variable development at the level of individual cells; models of these mechanisms show how interactions between participating cells guarantee community-level robustness. Cooperative interactions enhance homogeneity within communities of like cells and the sharpness of boundaries between communities of distinct cells, while competitive interactions amplify small inhomogeneities within communities of initially equivalent cells, resulting in fine-grained patterns of cell specialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Collier, J. R., N. A. M. Monk, P. K. Maini and J. H. Lewis. 1996. Pattern formation by lateral inhibition with feedback: a mathematical model of Delta-Notch signalling.J. Theoret. Biol. 183, 429–446.

    Article  Google Scholar 

  • Cooke, J. 1995. Morphogens in vertebrate development: how do they work?Bioessays 17, 93–96.

    Article  Google Scholar 

  • Goodwin, B. C., S. Kauffman and J. D. Murray. 1993. Is morphogenesis an intrinsically robust process?J Theoret. Biol. 163, 135–144.

    Article  Google Scholar 

  • Green, J. B. A., H. V. New and J. C. Smith. 1992. Responses of embryonicXenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm.Cell 71, 731–739.

    Article  Google Scholar 

  • Green, J. B. A. and J. C. Smith 1990. Graded changes in dose of aXenopus activin A homologue elicit stepwise transitions in embryonic cell fate.Nature 347, 391–394.

    Article  Google Scholar 

  • Green, J. B. A., J. C. Smith and J. C. Gerhart. 1994. Slow emergence of a multithreshold response to activin requires cell-contact-dependent sharpening but not prepattern.Development 120, 2271–2278.

    Google Scholar 

  • Gurdon, J. B., P. Lemaire and K. Katc. 1993a. Community effects and related phenomena in development.Cell 75, 831–834.

    Article  Google Scholar 

  • Gurdon, J. B., E. Tiller, J. Roberts and K. Kato. 1993b. A community effect in muscle development.Curr. Biol. 3, 1–11.

    Article  Google Scholar 

  • Gurdon, J. B., P. Harger, A. Mitchell and P. Lemaire. 1994. Activin signalling and response to a morphogen gradient.Nature 371, 487–492.

    Article  Google Scholar 

  • Gurdon, J. B., A. Mitchell and D. Mahoney. 1995. Direct and continuous assessment by cells of their position in a morphogen gradient.Nature 376, 520–521.

    Article  Google Scholar 

  • Heitzler, P. and P. Simpson. 1991. The choice of cell fate in the epidermis ofDrosophila.Cell 64, 1083–1092.

    Article  Google Scholar 

  • Isaacs, H. V., M. E. Pownall and J. M. W. Slack. 1994. eFGF regulatesXbra expression duringXenopus gastrulation.EMBO J. 13, 4469–4481.

    Google Scholar 

  • Kessler, D. S. and D. A. Melton 1994. Vertebrate embryonic induction: mesodermal and neural patterning.Science 266, 596–604.

    Google Scholar 

  • Kroll, K. L. and E. Amaya. 1996. TransgenicXenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation.Development 122, 3173–3183.

    Google Scholar 

  • Lewis, J. 1996. Neurogenic genes and vertebrate neurogenesis.Curr. Opin. Neurobiol. 6, 3–10.

    Article  MATH  Google Scholar 

  • Monk, N. A. M. 1997. The community effect and ectoderm-mesoderm interaction inXenopus muscle differentiation.Bull. Math. Biol. 59, 409–425.

    Article  MATH  Google Scholar 

  • Muskavitch, M. A. T. 1994. Delta-Notch signaling andDrosophila cell fate choice.Dev. Biol. 166, 415–430.

    Article  Google Scholar 

  • Sachs, T. 1994. Variable development as a basis for robust pattern formation.J. Theoret. Biol. 170, 423–425.

    Article  Google Scholar 

  • Schnabel, R. 1996. Pattern formation: regional specification in the earlyC. elegans embryo.Bioessays 18, 591–594.

    Article  Google Scholar 

  • Schulte-Merker, S. and J. C. Smith 1995. Mesoderm formation in response toBrachyury requires FGF signalling.Curr. Biol. 5, 62–67.

    Article  Google Scholar 

  • Smith, J. C., V. Cunliffe, J. B. A. Green and H. V. New. 1993. Intercellular signalling in mesoderm formation during amphibian development.Proc. R. Soc. Lond. B 340, 287–296.

    Google Scholar 

  • Sternberg, P. W. 1993. Falling off the knife edge.Curr. Biol. 3, 763–765.

    Article  Google Scholar 

  • Symes, K., C. Yordán and M. Mercola. 1994. Morphological differences inXenopus embryonic mesodermal cells are specified as an early response to distinct threshold concentrations of activin.Development 120, 2339–2346.

    Google Scholar 

  • Wilson, P. A. and D. A. Melton. 1994. Mesodermal patterning by an inducer gradient depends on secondary cell-cell communication.Curr. Biol. 4, 676–686.

    Article  Google Scholar 

  • Wolpert, L. 1969. Positional information and the spatial pattern of cellular differentiation.J. Theoret. Biol. 25, 1–47.

    Article  Google Scholar 

  • Wolpert, L. 1996. One hundred years of positional information.Trends Genet. 12, 359–364.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monk, N.A.M. Cell communities and robustness in development. Bltn Mathcal Biology 59, 1183–1189 (1997). https://doi.org/10.1007/BF02460107

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460107

Keywords

Navigation