Skip to main content
Log in

Flags, landscapes and signaling: contact-mediated inter-cellular interactions enable plasticity in fate determination driven by positional information

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Multicellular organisms exhibit a high degree of structural organization with specific cell types always occurring in characteristic locations. The conventional framework for describing the emergence of such consistent spatial patterns is provided by Wolpert’s “French flag” paradigm. According to this view, intra-cellular genetic regulatory mechanisms use positional information provided by morphogen concentration gradients to differentially express distinct fates, resulting in a characteristic pattern of differentiated cells. However, recent experiments have shown that suppression of inter-cellular interactions can alter these spatial patterns, suggesting that cell fates are not exclusively determined by the regulation of gene expression by local morphogen concentration. Using an explicit model where adjacent cells communicate by Notch signaling, we provide a mechanistic description of how contact-mediated interactions allow information from the cellular environment to be incorporated into cell fate decisions. Viewing cellular differentiation in terms of trajectories along an epigenetic landscape (as first enunciated by Waddington), our results suggest that the contours of the landscape are molded differently in a cell position-dependent manner, not only by the global signal provided by the morphogen but also by the local environment via cell–cell interactions. We show that our results are robust with respect to different choices of coupling between the inter-cellular signaling apparatus and the intra-cellular gene regulatory dynamics. Indeed, we show that the broad features can be observed even in abstract spin models. Our work reconciles interaction-mediated self-organized pattern formation with boundary-organized mechanisms involving signals that break symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L Wolpert The Triumph of the Embryo (Oxford: Oxford University Press) (1991)

    Google Scholar 

  2. L Wolpert and C Tickle Developmental Biology (Oxford: Oxford University Press) (2011)

    Google Scholar 

  3. S Gilbert Developmental Biology (MA.: Sinauer, Sunderland) (2013)

    Google Scholar 

  4. C H Waddington Organisers and Genes (Cambridge: Cambridge University Press) (1940)

    Google Scholar 

  5. A M Turing. Philos. Trans. R. Soc. London B 237 37 (1952).

    ADS  Google Scholar 

  6. M C Cross and P C Hohenberg.Rev. Mod. Phys. 65 851 (1993).

    ADS  Google Scholar 

  7. A J Koch and H Meinhardt. Rev. Mod. Phys. 66 1481 (1994).

    ADS  Google Scholar 

  8. P Ball The Self-made Tapestry: Pattern Formation in Nature (Oxford University Press, Oxford, 1999). https://doi.org/10.1119/1.880339

  9. H T Zhang and T Hiiragi. Annu. Rev. Cell Dev. Biol. 34 405 (2018).

    Google Scholar 

  10. F Crick. 225 420 (1970).

    ADS  Google Scholar 

  11. W Driever and C Nüsslein-Volhard. Cell 54 95 (1988).

    Google Scholar 

  12. A A Teleman, M Strigini and S M Cohen. Cell 105 559 (2001).

    Google Scholar 

  13. A D Lander, Q Nie and F Y M Wan. Dev. Cell 2 785 (2002).

    Google Scholar 

  14. T Bollenbach, K Kruse, P Pantazis, M González-Gaitán and F Jülicher. Phys. Rev. Lett. 94 018103 (2005).

    ADS  Google Scholar 

  15. J L England and J Cardy. Phys. Rev. Lett. 94 078101 (2005).

    ADS  Google Scholar 

  16. G Hornung, B Berkowitz and N Barkai.Phys. Rev. E 72 041916 (2005).

    ADS  MathSciNet  Google Scholar 

  17. A D Lander. Cell 128 245 (2007).

    Google Scholar 

  18. D Ben-Zvi and N Barkai. Proc. Natl. Acad. Sci. USA 107 6924 (2010).

    ADS  Google Scholar 

  19. S B Yuste, E Abad and K Lindenberg. Phys. Rev. E 82 061123 (2010).

    ADS  Google Scholar 

  20. C B Muratov, P V Gordon and S Y Shvartsman. Phys. Rev. E 84 041916 (2011).

    ADS  Google Scholar 

  21. A D Lander. Cell 144 955 (2011).

    Google Scholar 

  22. C Kuyyamudi, S N Menon, F Casares and S Sinha.Phys. Rev. E 104 L052401 (2021).

    ADS  Google Scholar 

  23. L Wolpert. J. Theor. Biol. 25 1 (1969).

    ADS  Google Scholar 

  24. L Wolpert. Development 107 3 (1989).

    Google Scholar 

  25. J Sharpe. Development, 146, dev185967 (2019).

    Google Scholar 

  26. J B Gurdon and P-Y Bourillot. Nature (Lond.) 413, 797 (2001).

    ADS  Google Scholar 

  27. H L Ashe and J Briscoe. Developement 133 385 (2006).

    Article  Google Scholar 

  28. K W Rogers and A F Schier. Annu. Rev. Cell Dev. Biol. 27 377 (2011).

    Google Scholar 

  29. J H Kong, L Yang, E Dessaud, K Chuang, D M Moore, R Rohatgi, J Briscoe and B G. Dev. Cell 33 373 (2015).

    Google Scholar 

  30. H Meinhardt Models of Biological Pattern Formation (London: Academic Press) (1982)

    Google Scholar 

  31. S Werner, T Stückemann, M B Amigo, J C Rink, F Jülicher and B M Friedrich. Phys. Rev. Lett. 114 138101 (2015).

    ADS  Google Scholar 

  32. S Artavanis-Tsakonas, M D Rand and R J Lake. Science 284 770 (1999).

    ADS  Google Scholar 

  33. R Kopan and M X G Ilagan. Cell 137 216 (2009).

    Google Scholar 

  34. D Sprinzak, A Lakhanpal, L LeBon, J Garcia-Ojalvo and M B Elowitz. PLoS Comput. Biol. 7 e1002069 (2011).

    ADS  Google Scholar 

  35. T Erdmann, M Howard and P R Ten Wolde. Phys. Rev. Lett. 103 258101 (2009).

    ADS  Google Scholar 

  36. A D Lander. Science 339 923 (2013).

    ADS  Google Scholar 

  37. E Dessaud, A P McMahon and J Briscoe. Development 135 2489 (2008).

    Google Scholar 

  38. E Dessaud, V Ribes, N Balaskas, L L Yang, A Pierani, A Kicheva, B G Novitch, J Briscoe and N Sasai. PLoS Biol. 8 e1000382 (2010).

    Google Scholar 

  39. N Balaskas, A Ribeiro, J Panovska, E Dessaud, N Sasai, K M Page, J Briscoe and V Ribes. Cell 148 273 (2012).

    Google Scholar 

  40. R Phillips, J Kondev, J Theriot, H G Garcia and N Orme Physical Biology of the Cell (New York, NY: Garland Science) (2013)

    Google Scholar 

  41. H Shimojo, T Ohtsuka and R Kageyama .Front. Neurosci. 5 78 (2011).

    Google Scholar 

  42. L J Manderfield, F A High, K A Engleka, F Liu, L Li, S Rentschler and J A Epstein. Circulation 125 314 (2012).

    Google Scholar 

  43. M Boareto, M K Jolly, M Lu, J N Onuchic, C Clementi and E Ben-Jacob. Proc. Natl. Acad. Sci. USA 112 E402 (2015).

    ADS  Google Scholar 

  44. C Kuyyamudi, S N Menon and S Sinha. Phys. Rev. E 103 062409 (2021).

    ADS  Google Scholar 

  45. J R Collier, N A Monk, P K Maini and J H Lewis. J. Theor. Biol. 183 429 (1996).

    ADS  Google Scholar 

  46. D Sprinzak, A Lakhanpal, L LeBon, L A Santat, M E Fontes, G A Anderson, J Garcia-Ojalvo and M B Elowitz. Nature 465 86 (2010).

    ADS  Google Scholar 

  47. C Kuyyamudi, S N Menon and S Sinha. (2021).

  48. M B Miller and B L Bassler. Annu. Rev. Microbiol. 55, 165 (2001).

    Google Scholar 

  49. C M Waters and B L Bassler. Annu. Rev. Cell Dev. Bi. 21 319 (2005).

    Google Scholar 

  50. J Blanchard. Phys. Rev. 11, 81 (1918).

    ADS  Google Scholar 

  51. F S Werblin. Sci. Am. 228 70 (1973).

    ADS  Google Scholar 

  52. J B Green and J Sharpe. Development 142 1203 (2015).

    Google Scholar 

  53. C Kuyyamudi, S N Menon and S Sinha. Phys. Biol. 19 016001 (2022).

    ADS  Google Scholar 

  54. C H Waddington The Strategy of the Genes (London: George Allen & Unwin) (1957)

    Google Scholar 

  55. J E Ferrell. Curr. Biol. 22 R458 (2012).

    Google Scholar 

  56. P Wang, C Song, H Zhang, Z Wu, X J Tian and J Xing. Interface Focus 4 20130068 (2014).

    Google Scholar 

  57. M Mojtahedi, A Skupin, J Zhou, I G Casta\(\tilde{\text{n}}\)o, R Y Y Leong-Quong, H Chang, K Trachana, A Giuliani, and S Huang. PLoS Biol. 14, e2000640 (2016).

  58. N Moris, C Pina and A M. Nat. Rev. Genet. 17 693 (2016).

    Google Scholar 

Download references

Acknowledgements

We would like to thank Marcin Zagórski for helpful discussions. SNM has been supported by the IMSc Complex Systems Project (12th Plan), and the Center of Excellence in Complex Systems and Data Science, both funded by the Department of Atomic Energy, Government of India. The simulations required for this work were supported by IMSc High Performance Computing facility (hpc.imsc.res.in) [Nandadevi.]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sitabhra Sinha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuyyamudi, C., Menon, S.N. & Sinha, S. Flags, landscapes and signaling: contact-mediated inter-cellular interactions enable plasticity in fate determination driven by positional information. Indian J Phys 96, 2657–2666 (2022). https://doi.org/10.1007/s12648-022-02348-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02348-6

Keywords

Navigation