Skip to main content
Log in

An equation for flow in the renal proximal tubule

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Approximate equations for epithelial solute and water transport have been combined with the relations of mass conservation to yield a single differential equation representing volume flow along the proximal tubule. This flow equation is first order, quasilinear and may be integrated directly. For the steady state, the result is an implicit relation between volume flow and distance along the tubule. For two time-dependent problems (step change of tubule inlet velocity or osmolality) the trajectories (distance as a function of transit time) of a fluid element starting at the inlet are obtained. Differentiation of the steady-state relation with respect to the inlet velocity yields a first-order differential equation relating inlet and outlet velocity. This equation is considered in detail, particularly with regard to the influence of solute-linked water reabsorption. Model calculations with parameters representing rat proximal tubule indicate that it will be difficult to discern coupled water flux in this epithelium from only outlet and inlet flows. Calculations using lower transport rates and lower permeabilities suggest that this equation may be useful in quantifying coupled water flow in proximal tubules from other species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Andreoli, T. E. and J. A. Schafer. 1978. “Volume Absorption in the Pars Recta. III. Luminal Hypotonicity as a Driving Force for isotonic Volume Absorption.”Am. J. Physiol. 234, F349-F355.

    Google Scholar 

  • — and —. 1979. “Effective Luminal Hypotonicity: The Driving Force for Isotonic Proximal Tubular Fluid Absorption.”Am. J. Physiol. 236, F89-F96.

    Google Scholar 

  • Bishop, J. H. V., R., Green and S. Thomas. 1979. “Free-flow Reabsorption of Glucose, Sodium, Osmoles and Water in Rat Proximal Convoluted Tubule.”J. Physiol. 288, 331–351.

    Google Scholar 

  • Bomsztyk, K. and F. S. Wright. 1982. “Effects of Transepithelial Fluid Flux on Trans-Epithelial Voltage and Transport of Calcium, Sodium, Chloride, and Potassium by Renal Proximal Tubule.”Kidney Int. 21, 269 (Abstract).

    Google Scholar 

  • Curran, P. F. and J. R. MacIntosh. 1962. “A Model System for Biological Water Transport.”Nature 347–348.

  • — and A. K. Solomon. 1957. “Ion and Water Fluxes in the Ileum of Rats.”J. gen. Physiol. 41, 143–168.

    Article  Google Scholar 

  • Diamond, J. M. 1962. “The Reabsorptive Function of the Gallbladder.”J. Physiol. 161, 442–473.

    Google Scholar 

  • — 1964. “Transport of Salt and Water in Rabbit and Guinea Pig Gallbladder.”J. gen. Physiol. 48, 1–14.

    Article  Google Scholar 

  • Durbin, R. P. 1960. “Osmotic Flow of Water Across Permeable Cellulose Membranes.”J. Gen. Physiol. 44, 315–326.

    Article  Google Scholar 

  • Gertz, K. H., J. A. Mangos, G. Braun and H. D. Pagel. 1965. “On the Glomerular tubular Balance in the Rat Kidney.”Pflügers Arch. ges. Physiol. 285, 360–372.

    Google Scholar 

  • Giebisch, G. and E. E. Windhager. “Electrolyte Transport Across Renal Tubular Membranes.” InHandbook of Physiology, Section 8, Renal Physiology (Eds J. Orloff and R. W. Berliner), pp. 315–376. Washington, DC: American Physiological Society.

  • Gottschalk, C. W. 1963. “Renal Tubular Function: Lessons from Micropuncture.” InThe Harvey Lectures, series 58, pp. 99–124. New York: Academic Press.

    Google Scholar 

  • Green, R. and G. Giebish. 1984. “Luminal Hypotonicity as a Driving Force for Fluid Absorption from the Proximal Convoluted Tubule of the Rat.”Am. J. Physiol. 246, F167-F174.

    Google Scholar 

  • —, R. J. Moriarty and G. Giebisch 1981. “Ionic Requirements of Proximal Tubular Fluid Reabsorption: Flow Dependence of Fluid Transport.”Kidney Int. 20, 580–587.

    Google Scholar 

  • Häberle, D. A. and H. von Baeyer. 1983. “Characteristics of Glomerulotubular Balance.”Am. J. Physiol. 244, F355-F366.

    Google Scholar 

  • Kaye, G. I., H. O. Wheeler, R. T. Whitlock and N. Lane. 1966. “Fluid Transport in the Rabbit Gallbladder.”J. Cell Biol. 30, 237–268.

    Article  Google Scholar 

  • Kokko, J. P., M. B. Burg and J. Orloff. 1971. “Characteristics of NaCl and Water Transport in the Renal Proximal Tubule.”J. clin. Invest. 50, 69–76.

    Google Scholar 

  • — and F. C. Rector. 1971. “Flow Dependence of Transtubular Potential Difference in Isolated Perfused Segments of Rabbit Proximal Convoluted Tubule.”J. clin. Invest. 50, 2745–2750.

    Google Scholar 

  • Morel, F. and Y. Murayama. 1970. “Simultaneous Measurement of Unidirectional and Net Sodium Fluxes in Microperfused Rat Proximal Tubules.”Pflügers Arch. ges. Physiol. 320, 1–23.

    Article  Google Scholar 

  • Schafer, J. A. and T. E. Andreoli. 1979. “Perfusionof Isolated Mammalian Renal Tubules.” InMembrane Transport in Biology, Vol. IV,Transport Organs (Ed. G. Giebisch). pp. 473–528. New York: Springer-Verlag.

    Google Scholar 

  • Schnermann, J., M. Horster and D. Z. Levine. 1969. “The Influence of Sampling Technique on the Micropuncture Determination of GFR and Reabsorptive Characteristics of Single Rat Proximal Tubules.”Pflügers Arch. ges. Physiol. 309, 48–58.

    Article  Google Scholar 

  • —, M. Wahl, G. Liebau and H. Fischbach. 1968. “Balance Between Tubular Flow Rate and Net Fluid Reabsorption in the Proximal Convolution of the Rat Kidney.”Pflügers Arch. ges. Physiol. 304, 90–103.

    Article  Google Scholar 

  • Smyth, D. H. and E. M. Wright. 1966. “Streaming Potentials in the Rat Small Intestine.”J. Physiol. 182, 591–602.

    Google Scholar 

  • Stephenson, J. L. 1981. “Case Studies in Renal and Empithelial Physiology.”Lect. appl. Math. 19, 171–212.

    MATH  MathSciNet  Google Scholar 

  • Tormey, J. McD. and J. M. Diamond. 1967. “The Ultrastructural Route of Fluid Transport in Rabbit Gallbladder.”J. gen. Physiol. 50, 2031–2060.

    Article  Google Scholar 

  • van Os, C. H., G. Wiedner and E. M. Wright. 1979. “Volume Flows Across Gallbladder Epithelium Induced by Small Hydrostatic and Osmotic Gradients.”J. Membr. Biol. 49, 1–20.

    Article  Google Scholar 

  • Weinstein, A. M. 1983. “A Nonequilibrium Thermodynamic Model of the Rat Proximal Tubule Epithelium.”Biophys. J. 44, 153–170.

    Article  Google Scholar 

  • -Weinstein, A. M.. 1985. “A Mathematical Model of the Rat Proximal Tubule.” FASEB. (Abstract).

  • — and J. L. Stephenson. 1981. “Models of Coupled Salt and Water Transport Across Leaky Epithelia.”J. Membr. Biol. 60, 1–20.

    Article  Google Scholar 

  • —— and K. R. Spring. 1981. “The Coupled Transport of Water.” InMembrane Transport (Eds S. L. Bonting and J. J. H. H. M. dePont), pp. 311–351. Amsterdam: Elsevier/North-Holland.

    Google Scholar 

  • — and E. E. Windhager. 1985. “Sodium Transport Along the Proximal Tubule.” InPhysiology and Pathology of Electrolyte Metabolism (Eds G. Giebisch and D. Seldin). New York: Raven Press.

    Google Scholar 

  • Whitlock, R. T. and H. O. Wheeler. 1964. “Coupled Transport of Solute and Water Across Rabbit Gallbladder Epithelium.”J. clin. Invest. 48, 2249–2265.

    Article  Google Scholar 

  • Williams, A. W. 1963. “Electron Microscopic Changes Associated with Water Absorption in the Jejunum.”Gut 4, 1–7.

    Google Scholar 

  • Windhager, E. E. 1979. “Sodium Chloride Transport.” InMembrane Transport in Biology, Vol. IV,Transport Organs (Ed. G. Giebisch), pp. 145–214. Berlin: Springer-Verlag.

    Google Scholar 

  • —, G. Whittembury, D. E. Oken, H. J. Schatzmann and A. K. Solomon. 1959. “Single Proximal Tubules of theNecturus Kidney. III. Dependence of H2O Movement on NaCl Concentration.”Am. J. Physiol. 197, 313–318.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinstein, A.M. An equation for flow in the renal proximal tubule. Bltn Mathcal Biology 48, 29–57 (1986). https://doi.org/10.1007/BF02460061

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460061

Keywords

Navigation