Skip to main content
Log in

Material recycling in a closed aquatic ecosystem. II. Bifurcation analysis of a simple food-chain model

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The present paper deals with the bifurcation analysis of a simple food chain model consisting of components like detritus, nutrients, microorganisms, phytoplankton and zooplankton in an aquatic environment. The food chain model is described by a system of differential equations. If the length of the food chain (LFCH) is equal to 3 or 4, then an asymptotically stable equilibrium exists. For LFCH=5 or 6 the non-trivial equilibrium is unstable and the food-chain model has periodic orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R. V., D. C. Coleman, C. V. Cole, E. T. Elliott, and J. F. McClellan. 1979. The use of soil microcosms in evaluating bacteriophagic nematode responses to other organisms and effect on nutrient cycling.Int. J. Environmental Studies 13, 175–182.

    Google Scholar 

  • Bhatia, N. P. and G. T. Szegő. 1970.Stability Theory of Dynamical Systems. New York: Springer.

    MATH  Google Scholar 

  • Busenberg, S., S. K. Kumar, P. Austin, and G. Wake. 1990. The dynamics of a model of a plankton-nutrient interaction.Bull. Math. Biol.,52, 677–696.

    MATH  Google Scholar 

  • Butler, G. J., S. B. Hsu, and P. Waltman. 1983. Coexistence of competing predators in a chemostat.J. Math. Biol. 17, 133–151.

    Article  MATH  MathSciNet  Google Scholar 

  • DeAngelis, D. L. 1980. Energy flow, nutrient cycling and ecosystem resilience.Ecology 61, 764–771.

    Article  Google Scholar 

  • Dudzik, M., J. Harte, E. Jassby, E. Lapan, D. Levy, and J. Rees. 1979. Some consideration in the design of aquatic microcosms for plankton studies.Int. J. Environmental Studies 13, 125–130.

    Google Scholar 

  • Freedman, H. I. and J. W. H. So. 1985. Global stability and persistence of simple food chain.Math. Biosci. 76, 69–86.

    Article  MATH  MathSciNet  Google Scholar 

  • Gantmacher, F. R. 1959.The Theory of Matrices, Vol. 2. New York: Chelsea.

    MATH  Google Scholar 

  • Giddings, J. M. and G. K. Eddlemon. 1979. Some ecological and experimental properties of complex aquatic microcosms.Int. J. Environmental Studies 13, 119–123.

    Google Scholar 

  • Hofbauer J. and K. Sigmund. 1988.The Theory of Evolution and Dynamical Systems, p. 341. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Horward, L. N. 1979. Nonlinear oscillations. InNonlinear Oscillation in Biology. Lectures in Applied Mathematics, F. R. Hoppenstead (Ed), Vol. 17, pp. 1–69. Providence, RI: American Mathematical Society.

    Google Scholar 

  • Kmeť, T. 1986. Dynamic ecological system models. Ph.D. thesis, Center of Biological Ecological Sciences, Slovak Academy of Sciences, Bratislava, (in Slovak with English summary).

    Google Scholar 

  • Leonov, A. 1980. The chemical-ecological modelling of aquatic nitrogen compound transformation processes. HASA WP 80-86, HASA Laxenburg, Austria.

    Google Scholar 

  • Mardsen, J. E. and M. McCracken M.. 1976.The Hopf Bifurcation and Its Applications, p. 408. New York: Springer-Verlag.

    Google Scholar 

  • May, R. M. 1973. Mass and energy flow in closed ecosystems: a comment,J. Theor. Biol. 37, 155–163.

    Article  Google Scholar 

  • Nisbet, R. M. and W. S. C. Gurney. 1976. Model of material cycling in a closed ecosystem.Nature (London) 264, 633–634.

    Article  Google Scholar 

  • Nisbet, R. M., J. McKinstry, and W. S. C. Gurney, 1983. A strategic model of material cycling in a closed ecosystem.Math. Biosci. 64, 99–113.

    Article  MATH  Google Scholar 

  • Rapp, P. E., R. A. Latta, and A. I. Mees. 1988. Parameter-dependent transitions and the optimal control of dynamical diseases.Bull. Math. Biol. 50, 227–253.

    MATH  MathSciNet  Google Scholar 

  • Smith, H. L. 1982. The interaction of steady state and hopf bifurcations in a two-predatorone-prey competition model.SIAM J. Appl. Math. 42, 27–43.

    Article  MATH  MathSciNet  Google Scholar 

  • Ulanowicz, R. E. 1972. Mass and energy flow in closed ecosystems.J. Theor. Biol. 34, 239–253.

    Article  Google Scholar 

  • Wroblewski, J. S., J. L. Sarmiento, and G. R. Fliel. 1988. An ocean basin scale model of plankton dynamic in the North Atlantic. Solutions for the climatological oceanographic condition in May.Global Biogeochem. Cycles 2, 199–218.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kmeť, T. Material recycling in a closed aquatic ecosystem. II. Bifurcation analysis of a simple food-chain model. Bltn Mathcal Biology 58, 983–1000 (1996). https://doi.org/10.1007/BF02459493

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459493

Keywords

Navigation