Skip to main content
Log in

Coexistence of competing predators in a chemostat

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

An analysis is given of a mathematical model of two predators feeding on a single prey growing in the chemostat. In the case that one of the predators goes extinct, a global stability result is obtained. Under appropriate circumstances, a bifurcation theorem can be used to show that coexistence of the predators occurs in the form of a limit cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Butler, G. J.: Coexistence in predator-prey systems. In: Burton, T. (ed.) Modeling and differential equations in biology. New York: Marcel Dekker 1980

    Google Scholar 

  2. Butler, G. J., Waltman, P.: Bifurcation from a limit cycle in a two predator-one prey ecosystem modeled on a chemostat. J. Math. Biology 12, 295–310 (1981)

    Google Scholar 

  3. Canale, R. P.: Prey relationships in a model for activated process. Biotechnol. Bioengineering 11, 887–907 (1969)

    Google Scholar 

  4. Canale, R. P.: An analysis of models describing predator prey interaction. Biotechnol. Bioengineering 12, 353–378 (1970)

    Google Scholar 

  5. Cheng, K. S.: Uniqueness of limit cycle for a predator-prey system. SIAM J. Math. Analysis 12, 541–548 (1981)

    Google Scholar 

  6. Drake, J. F., Tsuchiya, H. M.: Predation of Escherichia Coli by Colpoda Stenii. Appl. Envr. Microbiol. 31, 870–874 (1976)

    Google Scholar 

  7. Erle, D.: Stable closed orbits in plane autonomous dynamical systems. J. Reine Angew. Math. 305, 136–139 (1979)

    Google Scholar 

  8. Fredrickson, A. G., Stephanopoulos, G.: Microbial competition. Science 213, 972–979 (1981)

    Google Scholar 

  9. Hansen, S. R., Hubbell, S. P.: Single-nutrient microbial competition: Agreement between experimental and theoretical forecast outcomes. Science 207, 1491–1493 (1980)

    Google Scholar 

  10. Herbert, D., Elsworth, R., Telling, R. C.: The continuous culture of bacteria: A theoretical and experimental study. J. Gen. Microbiol. 14, 601–622 (1956)

    Google Scholar 

  11. Hsu, S. B., Hubbell, S., Waltman, P.: A mathematical theory for single-nutrient competition in continuous cultures of microorganisms. SIAM J. Appl. Math. 32, 366–383 (1977)

    Google Scholar 

  12. Hsu, S. B., Hubbell, S. P., Waltman, P.: A contribution to the theory of competing predators. Ecol. Mongr. 48, 337–349 (1978)

    Google Scholar 

  13. Hsu, S. B.: Limiting behavior for competing species. SIAM J. Appl. Math. 34, 760–763 (1978)

    Google Scholar 

  14. Jannash, H. W., Mateles, R. T.: Experimental bacterial ecology studied in continuous culture. Adv. Microb. Physiol. 11, 165–212 (1974)

    Google Scholar 

  15. Jost, J. L., Drake, S. F., Fredrickson, A. G., Tsuchiya, M.: Interaction of tetrahymena pyriformis, escherichia coli, azotobacter vinelandii and glucose in a minimal medium. J. Bacteriol. 113, 834–840 (1976)

    Google Scholar 

  16. Keener, J. P.: Oscillatory coexistence in the chemostat: A codimension two unfolding, SIAM J. Appl. Math. (to appear)

  17. Koch, A. L.: Competitive coexistence of two predators utilizing the same prey under constant environmental conditions. J. Theoret. Biology 44, 378–386 (1974)

    Google Scholar 

  18. Marsden, J. E., McCracken, M.: The Hopf bifurcation and its applications. Berlin-Heidelberg-New York: Springer 1976

    Google Scholar 

  19. McGehee, R., Armstrong, R. A.: Some mathematical problems concerning the ecological principle of competitive exclusion. J. Diff. Eq. 23, 30–52 (1977)

    Google Scholar 

  20. Monod, J.: Recherches sur la croissance des cultures bacteriennes. Paris: Hermann 1942

    Google Scholar 

  21. Pike, E. B., Cuids, C. R.: The microbial ecology of activated sludge process. In: Sykes, G., Skinner, F. A. (eds) Microbial aspects of pollution. New York: Academic Press 1971

    Google Scholar 

  22. Sell, G.: What is a dynamical system? In: Hale, J. (ed) Studies in ordinary differential equations. MAA Studies in Mathematics No. 14, 1977

  23. Smith, H. L.: The interaction of steady state and Hopf bifurcation in a two-predator-one-prey competition model. SIAM J. Appl. Math. 42, 27–43 (1982)

    Google Scholar 

  24. Stewart, F. M., Levin, B. R.: Partitioning of resources and the outcome of interspecific competition; A model and some general considerations. Am. Nat. 107, 171–198 (1973)

    Google Scholar 

  25. Tsuchiya, H. M., Drake, S. F., Jost, J. L., Fredrickson, A. G.: Predator-prey interactions of dictyostelium discordeum and escherichia coli in continuous culture. J. Bacteriol. 110, 1147–1153 (1972)

    Google Scholar 

  26. Veldcamp, H.: Ecological studies with the chemostat. Adv. Microbial Ecol. 1, 59–95 (1977)

    Google Scholar 

  27. Waltman, P., Hubbell, S. P., Hsu, S. B.: Theoretical and experimental investigations of microbial competition in continuous culture. In: Burton, T. (ed) Modeling and differential equations in biology. New York: Marcel Dekker 1980

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by NSERC Grant A-8130

Research supported by National Science Council of ROC

Research supported by NSF Grant MCS-8120380. A portion of this research was performed while the author was a Visiting Professor at the University of Southern California, Los Angeles

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butler, G.J., Hsu, S.B. & Waltman, P. Coexistence of competing predators in a chemostat. J. Math. Biology 17, 133–151 (1983). https://doi.org/10.1007/BF00305755

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00305755

Key words

Navigation