Skip to main content
Log in

Constraints on reciprocity for non-sessile organisms

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Previous game-theoretic models of reciprocity have assumed that populations are large and organisms effectively sessile. This paper analyzes an iterated prisoner's dilemma among non-sessile organisms in a finite population, on the assumption that an individual's chance of remaining in one place is not influenced by a partner's behavior. This mode of interaction is suitable for analyzing potentially cooperative behaviors that are secondary to the advantage of group formation, e.g. allogrooming among social mammals. The analysis yields necessary conditions for stable reciprocity in terms of three parameters, namely, a benefit/cost ratio, the probability of further interaction and the probability of partner retention. The results suggest that, in highly mobile organisms such as fish, birds and mammals, reciprocity may be stable only if the population is small and the relative benefit and future interaction probability are both large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axelrod, R. 1984.The Evolution of Cooperation. New York: Basic Books.

    Google Scholar 

  • Axelrod, R. and W. D. Hamilton. 1981. The evolution of cooperation.Science 211, 1390–1396.

    MathSciNet  Google Scholar 

  • Boyd, R. and J. Lorberbaum. 1987. No pure strategy is evolutionarily stable in the repeated prisoner's dilemma game.Nature 327, 58–59.

    Article  Google Scholar 

  • Clements, K. C. and D. W. Stephens. 1995. Testing models of non-kin cooperation: mutualism and the prisoner's dilemma.Animal Behaviour 50, 527–535.

    Article  Google Scholar 

  • Dawkins, R. 1989.The Selfish Gene, 2nd ed. Oxford. Oxford University Press.

    Google Scholar 

  • Dugatkin, L. A. 1988. Do guppies play tit for tat during predator inspection visits?Behavioral Ecology and Sociobiology 23, 395–399.

    Article  Google Scholar 

  • Dugatkin, L. A., M. Mesterton-Gibbons and A. I. Houston. 1992. Beyond the prisoner's dilemma: toward models to discriminate among mechanisms of cooperation in nature.Trends in Ecology and Evolution 7, 202–205.

    Article  Google Scholar 

  • Dugatkin, L. A. and D. S. Wilson. 1991. ROVER: a strategy for exploiting cooperators in a patchy environment.Amer. Naturalist 138, 687–701.

    Article  Google Scholar 

  • Enquist, M. and O. Leimar. 1993. The evolution of cooperation in mobile organisms.Animal Behaviour 45, 747–757.

    Article  Google Scholar 

  • Feldman, M. W. and E. A. C. Thomas. 1987. Behavior-dependent contexts for repeated plays of the prisoner's dilemma II: dynamical aspects of the evolution of cooperation.J. Theor. Biol. 128, 297–315.

    MathSciNet  Google Scholar 

  • Ferrier, R. and R. E. Michod. 1995. Invading wave of cooperation in a spatial iterated prisoner's dilemma.Proc. Roy. Soc. London Ser. B 259, 77–83.

    Google Scholar 

  • Hart, B. L. and L. A. Hart. 1992. Reciprocal allogrooming in impala.Aepyceros melampus. Animal Behaviour 44, 1073–1083.

    Article  Google Scholar 

  • Hart, B. L., L. A. Hart, M. S. Mooring and R. Olubayo. 1992. Biological basis of grooming behaviour in antelope: the body-size, vigilance and habitat principles.Animal Behaviour 44, 615–631.

    Article  Google Scholar 

  • Houston, A. I. 1993. Mobility limits cooperation.Trends in Ecology and Evolution 8, 194–196.

    Article  Google Scholar 

  • Levins, R. 1966. The strategy of model building in population biology.Amer. Scientist 54, 421–431.

    Google Scholar 

  • Lorberbaum, J. 1994. No strategy is evolutionarily stable in the repeated prisoner's dilemma.J. Theor. Biol.,168, 117–130.

    Article  Google Scholar 

  • May, R. M. 1981. The evolution of cooperation.Nature 292, 291–292.

    Google Scholar 

  • Maynard Smith, J. 1982.Evolution and the Theory of Games. Cambridges: Cambridge University Press.

    Google Scholar 

  • Mesterton-Gibbons, M. 1992. On the iterated prisoner's dilemma in a finite population.Bull. Math. Biol. 54, 423–443.

    Article  MATH  Google Scholar 

  • Mesterton-Gibbons, M. and L. A. Dugatkin. 1992. Cooperation among unrelated individuals: evolutionary factors.Quart. Rev. Biol. 67, 267–281.

    Article  Google Scholar 

  • Milinski, M. 1987. Tit for rat in sticklebacks and the evolution of cooperation.Nature 325, 433–435.

    Article  Google Scholar 

  • Nowak, M. A., S. Bonhoeffer and R. M. May. 1994. More spatial games,Int. J. Bifurcation and Chaos 4, 33–56.

    Article  MATH  MathSciNet  Google Scholar 

  • Nowak, M. A. and R. M. May. 1992. Evolutionary games and spatial chaos.Nature 359, 826–829.

    Article  Google Scholar 

  • Nowak, M. A. and R. M. May. 1993. The spatial dilemmas of evolution.Int. J. Bifurcation and Chaos 3, 35–78.

    Article  MATH  MathSciNet  Google Scholar 

  • Packer, C. 1986. Whatever happened to reciprocal altruism?,Trends in Ecology and Evolution 1, 142–143.

    Article  Google Scholar 

  • Peck, J. R. 1993. Friendship and the evolution of co-operation.J. Theor. Biol. 162, 195–228.

    Article  Google Scholar 

  • Peck, J. R. and M. W. Feldman. 1986. The evolution of helping behavior in large, randomly mixed populations.Amer. Naturalist 127, 209–221.

    Article  Google Scholar 

  • Pulliam, H. R. and T. Caraco. 1984. Living in groups: is there an optimal group size? InBehavioural Ecology: An Evolutionary Approach, J. R. Krebs and N. B. Davies (Eds.), 2nd ed., Chap. 5, pp. 122–147. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Pulliam, H. R., G. H. Pyke, and T. Caraco. 1982. The scanning behavior of juncos: a game-theoretic approach.J. Theor. Biol.,95, 89–103.

    Article  MathSciNet  Google Scholar 

  • Slater, P. J. B. 1994. Kinship and altruism. InBehaviour and Evolution, P. J. B. Slater and T. R. Halliday (Eds), Chap. 7, pp. 193–222. Cambridge: Cambridge University Press.

    Google Scholar 

  • Stephens, D. W., K. Nishimura, and K. B. Toyer. 1995. Error and discounting in the iterated prisoner's dilemma.J. Theor. Biol.,176 457–469.

    Article  Google Scholar 

  • Wilkinson, G. S. 1984. Reciprocal food sharing in the vampire bat.Nature 308, 181–184.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mesterton-Gibbons, M., Childress, M.J. Constraints on reciprocity for non-sessile organisms. Bltn Mathcal Biology 58, 861–875 (1996). https://doi.org/10.1007/BF02459487

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459487

Keywords

Navigation