Skip to main content
Log in

A mathematical model for weed dispersal and control

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Mathematical models for weed dispersal and control are developed, analyzed and numerically simulated. A model incorporating periodic control, e.g. herbicide application, is derived for a plant population in a spatially homogeneous setting. The model is extended to a spatially heterogeneous population where plant dispersal is incorporated. The dispersal and control model involves integrodifference equations, discrete in time and continuous in space. The models are analyzed to determine values of the control parameter that prevent weed spread. The effects of the control on travelling wave solutions are investigated numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, E. J., L. J. S. Allen and X. Gilliam. 1996. Dispersal and competition models for plants.J. Math. Biol. 34, 455–481.

    MATH  MathSciNet  Google Scholar 

  • Allen, L. J. S. 1994. Some discrete-timeSI, SIR, andSIS epidemic models.Math. Biosci. 124, 83–105.

    Article  MATH  Google Scholar 

  • Allen, L. J. S., E. J. Allen, C. R. G. Kunst and R. E. Sosebee. 1991. A diffusion model for dispersal ofopuntia imbricata (cholla) on rangeland.J. Ecol. 79, 1123–1135.

    Article  Google Scholar 

  • Andersen, M. 1991. Properties of some density-dependent integrodifference population models.Math. Biosci. 104, 135–157.

    Article  MATH  MathSciNet  Google Scholar 

  • Anderson, R. M. and R. M. May. 1992.Infectious Diseases of Humans, Dynamics and Control. Oxford: Oxford University Press.

    Google Scholar 

  • Cull, P. 1981. Global stability of population models.Bull. Math. Biol. 43, 47–58.

    MATH  MathSciNet  Google Scholar 

  • Edelstein-Keshet, L. 1988.Mathematical Models in Biology. New York: Random House/ Birkhäuser.

    Google Scholar 

  • Firbank, L. G. and A. R. Watkinson. 1986. Modelling the population dynamics of an arable weed and its effects upon crop yield.J. Appl. Ecol. 23, 147–159.

    Article  Google Scholar 

  • Ghersa, C. M. and M. L. Rousch. 1993. Searching for solutions to weed problems.BioSci. 43, 104–109.

    Article  Google Scholar 

  • Hethcote, H. W. 1976. Qualitative analyses of communicable disease models.Math. Biosci. 28, 335–356.

    Article  MATH  MathSciNet  Google Scholar 

  • Kot, M. 1992. Discrete-time travelling waves: ecological examples.J. Math. Biol. 30, 413–436.

    Article  MATH  MathSciNet  Google Scholar 

  • Kot, M. and W. M. Schaffer. 1986. Discrete-time growth-dispersal models.Math. Biosci. 80, 109–136.

    Article  MATH  MathSciNet  Google Scholar 

  • Lacey, J. R. and B. E. Olson. 1991. Environmental and economic impacts of noxious range weeds. InNoxious Range Weeds. L.J. James, J. O. Evans, M. H. Ralphs and R. D. Child, Eds., pp. 5–16. Boulder, CO: Westview Press.

    Google Scholar 

  • Lui, R. 1982a. A nonlinear integral operator arising from a model in population genetics, I. Monotone initial data.SIAM J. Math. Anal. 13, 913–937.

    Article  MATH  MathSciNet  Google Scholar 

  • Lui, R. 1982b. A nonlinear integral operator arising from a model in population genetics, II. Initial data with compact support.SIAM J. Math. Anal. 13, 938–953.

    Article  MATH  MathSciNet  Google Scholar 

  • Mollison, D. 1977. Spatial contact models for ecological and epidemic spread.J. Roy. Statist. Soc. Ser. B 39, 283–326.

    MATH  MathSciNet  Google Scholar 

  • Pakes, A. G. and R. A. Maller. 1990.Mathematical Ecology of Plant Species Competition. Cambridge: Cambridge University Press.

    Google Scholar 

  • Weinberger, H. F. 1982. Longtime behavior of a class of biological models,SIAM J. Math. Anal. 13, 353–396.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, L.J.S., Allen, E.J. & Ponweera, S. A mathematical model for weed dispersal and control. Bltn Mathcal Biology 58, 815–834 (1996). https://doi.org/10.1007/BF02459485

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459485

Keywords

Navigation